# Computational Complexity

Interactive and noninteractive zero knowledge are equivalent in the help model.” In Proceedings of the Third Theory of Cryptography Conference (TCC '08), 4948:501-534. Springer-Verlag, Lecture Notes in Computer Science, 2008. Publisher's VersionAbstract

. “
An equivalence between zero knowledge and commitments.” In R. Canetti, editor, Proceedings of the Third Theory of Cryptography Conference (TCC ‘08), 4948:482-500. Springer Verlag, Lecture Notes in Computer Science, 2008. Publisher's VersionAbstract

. “
Limitations on hardness vs. randomness under uniform reductions.” In Proceedings of the 12th International Workshop on Randomization and Computation (RANDOM ‘08), Lecture Notes in Computer Science, 5171:469-482. Springer-Verlag, 2008. Publisher's VersionAbstract

. “
The complexity of distinguishing Markov random fields.” In Proceedings of the 12th International Workshop on Randomization and Computation (RANDOM ‘08), Lecture Notes in Computer Science, 5171:331-342. Springer-Verlag, 2008. Publisher's VersionAbstract

. “
Dense subsets of pseudorandom sets.” In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘08), 76-85. IEEE, 2008. Publisher's VersionAbstract

. “
Zero knowledge and soundness are symmetric.” In Advances in Cryptology–EUROCRYPT '07, 4515:187-209. Barcelona, Spain: Springer Verlag, Lecture Notes in Computer Science, M. Naor, ed. 2007. Publisher's VersionAbstract

. “
The hardness of the expected decision depth problem.” Information Processing Letters 101, no. 3 (2007): 112-118. Publisher's VersionAbstract

. “
Amplifying collision-resistance: A complexity-theoretic treatment.” In A. Menezes, editor, Advances in Cryptology (CRYPTO '07), 4622:264-283. Lecture Notes in Computer Science, Springer-Verlag, 2007. Publisher's VersionAbstract

. “
Concurrent zero knowledge without complexity assumptions.” In S. Halevi and T. Rabin, eds., Proceedings of the Third Theory of Cryptography Conference (TCC '06), 3876:1-20. New York, NY, USA: Springer Verlag, Lecture Notes in Computer Science, 2006. Publisher's VersionAbstract

. “
Statistical zero-knowledge arguments for NP from any one-way function.” In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘06), 3-13. IEEE, 2006. Publisher's VersionAbstract

. “
A complete problem for statistical zero knowledge.” Journal of the ACM 50, no. 2 (2003): 196-249.Abstract

. “
The complexity of counting in sparse, regular, and planar graphs.” SIAM Journal on Computing 31, no. 2 (2001): 398-427.Abstract

. “
Manipulating statistical difference.” Randomization Methods in Algorithm Design (DIMACS Workshop, December 1997), volume 43 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science 43 (1999): 251-270.Abstract

. “
Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge.” Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC ‘98) (1998): 399-408.Abstract

. “