
Why Simple Hash Functions Work:

Exploiting the Entropy in a Data Stream∗

Michael Mitzenmacher† Salil Vadhan‡

Abstract

Hashing is fundamental to many algorithms and data
structures widely used in practice. For theoretical
analysis of hashing, there have been two main ap-
proaches. First, one can assume that the hash function
is truly random, mapping each data item independently
and uniformly to the range. This idealized model is un-
realistic because a truly random hash function requires
an exponential number of bits to describe. Alterna-
tively, one can provide rigorous bounds on performance
when explicit families of hash functions are used, such
as 2-universal or O(1)-wise independent families. For
such families, performance guarantees are often notice-
ably weaker than for ideal hashing.

In practice, however, it is commonly observed that
simple hash functions, including 2-universal hash func-
tions, perform as predicted by the idealized analysis for
truly random hash functions. In this paper, we try to ex-
plain this phenomenon. We demonstrate that the strong
performance of universal hash functions in practice can
arise naturally from a combination of the randomness
of the hash function and the data. Specifically, follow-
ing the large body of literature on random sources and
randomness extraction, we model the data as coming
from a “block source,” whereby each new data item has
some “entropy” given the previous ones. As long as the
(Renyi) entropy per data item is sufficiently large, it
turns out that the performance when choosing a hash
function from a 2-universal family is essentially the same
as for a truly random hash function. We describe results
for several sample applications, including linear probing,
balanced allocations, and Bloom filters.

∗The full version of this paper is available from the authors’
webpages.

†School of Engineering and Applied Sciences, Harvard Univer-
sity, Cambridge, MA 02138. michaelm@eecs.harvard.edu. Sup-
ported by NSF grant CCF-0634923 and grants from Yahoo! Inc.
and Cisco, Inc.

‡School of Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA 02138. salil@eecs.harvard.edu. Work
done in part while visiting U.C. Berkeley. Supported by ONR
grant N00014-04-1-0478, NSF grant CCF-0133096, US-Israel BSF
grant 2002246, a Guggenheim Fellowship, and the Miller Institute
for Basic Research in Science.

1 Introduction

Hashing is at the core of many fundamental algorithms
and data structures, including all varieties of hash ta-
bles [Knu], Bloom filters and their many variants [BM2],
summary algorithms for data streams [Mut], and many
others. Traditionally, applications of hashing are ana-
lyzed as if the hash function is a truly random func-
tion (a.k.a. “random oracle”) mapping each data item
independently and uniformly to the range of the hash
function. However, this idealized model is unrealistic,
because a truly random function mapping {0, 1}n to
{0, 1}m requires an exponential number of bits to de-
scribe.

For this reason, a line of theoretical work, starting
with the seminal paper of Carter and Wegman [CW]
on universal hashing, has sought to provide rigorous
bounds on performance when explicit families of hash
functions are used, e.g. ones whose description and
computational complexity are polynomial in n and m.
While many beautiful results of this type have been ob-
tained, they are not always as strong as we would like.
In some cases, the types of hash functions analyzed can
be implemented very efficiently (e.g. universal or O(1)-
wise independent), but the performance guarantees are
noticeably weaker than for ideal hashing. (A motivating
recent example is the analysis of linear probing under
5-wise independence [PPR].) In other cases, the perfor-
mance guarantees are (essentially) optimal, but the hash
functions are more complex and expensive (e.g. with a
super-linear time or space requirement). For example,
if at most T items are going to be hashed, then a T -
wise independent hash function will have precisely the
same behavior as an ideal hash function. But a T -wise
independent hash function mapping to {0, 1}m requires
at least T ·m bits to represent, which is often too large.
For some applications, it has been shown that less inde-
pendence, such as O(log T)-wise independence, suffices,
e.g. [SS, PR], but such functions are still substantially
less efficient than 2-universal hash functions. A series
of works [Sie, OP, DW] have improved the time com-
plexity of (almost) T -wise independence to a constant
number of word operations, but the space complexity
necessarily remains at least T ·m.

746

In practice, however, the performance of standard
universal hashing seems to match what is predicted for
ideal hashing. This phenomenon was experimentally
observed long ago in the setting of Bloom filters [Ram2];
other reported examples include [BM1, DKSL, PR,
Ram1, RFB]. Thus, it does not seem truly necessary
to use the more complex hash functions for which this
kind of performance can be proven. We view this as
a significant gap between the theory and practice of
hashing.

In this paper, we aim to bridge this gap. Specifi-
cally, we suggest that it is due to the use of worst-case
analysis. Indeed, in some cases, it can be proven that
there exist sequences of data items for which univer-
sal hashing does not provide optimal performance. But
these bad sequences may be pathological cases that are
unlikely to arise in practice. That is, the strong per-
formance of universal hash functions in practice may
arise from a combination of the randomness of the hash
function and the randomness of the data.

Of course, doing an average-case analysis, whereby
each data item is independently and uniformly distrib-
uted in {0, 1}n, is also very unrealistic (not to mention
that it trivializes many applications). Here we propose
that an intermediate model, previously studied in the
literature on randomness extraction [CG], may be an
appropriate data model for hashing applications. Under
the assumption that the data fits this model, we show
that relatively weak hash functions achieve essentially
the same performance as ideal hash functions.

Our Model. We model the data as coming from
a random source in which the data items can be far
from uniform and have arbitrary correlations, provided
that each (new) data item is sufficiently unpredictable
given the previous items. This is formalized by Chor
and Goldreich’s notion of a block source [CG],1 where
we require that the i’th item Xi has at least some
k bits of “entropy” conditioned on the previous items
X1, . . . , Xi−1. There are various choices for the entropy
measure that can be used here; Chor and Goldreich use
min-entropy, but most of our results hold even for the
less stringent measure of Renyi entropy.

Our work is very much in the same spirit as previous
works that have examined intermediate models between
worst-case and average-case analysis of algorithms for
other kinds of problems. Examples include the semi-
random graph model of Blum and Spencer [BS], and the
smoothed analysis of Spielman and Teng [ST]. Inter-
estingly, Blum and Spencer’s semi-random graph mod-
els are based on Santha and Vazirani’s model of semi-

1Chor and Goldreich called these probability-bounded sources,
but the term block source has become more common in the
literature.

random sources [SV], which in turn were the precur-
sor to the Chor–Goldreich model of block sources [CG].
Chor and Goldreich suggest using block sources as an
input model for communication complexity, but surpris-
ingly it seems that no one has considered them as an
input model for hashing applications.

Our Results. Our first observation is that stan-
dard results in the literature on randomness extractors
already imply that universal hashing performs nearly
as well ideal hashing, provided the data items have
enough entropy [BBR, ILL, CG, Zuc]. Specifically,
if we have T data items coming from a block source
(X1, . . . , XT) where each data item has (Renyi) entropy
at least m+2 log(T/ε) and H is a random universal hash
function mapping to {0, 1}m, then (H(X1), . . . , H(XT))
has statistical difference at most ε from T uniform and
independent elements of {0, 1}m. Thus, any event that
would occur with some probability p under ideal hash-
ing now occurs with probability p± ε. This allows us to
automatically translate existing results for ideal hashing
into results for universal hashing in our model.

In our remaining results, we focus on reducing the
amount of entropy required from the data items. As-
suming our hash function has a description size o(mt),
then we must have (1− o(1))m bits of entropy per item
for the hashing to “behave like” ideal hashing (because
the entropy of (H(X1), . . . , H(XT)) is at most the sum
of the entropies of H and the Xi’s). The standard analy-
sis mentioned above requires an additional 2 log(T/ε)
bits of entropy per block. In the randomness extraction
literature, the additional entropy required is typically
not significant because log(T/ε) is much smaller than m.
However, it can be significant in our applications. For
example, a typical setting is hashing T = Θ(M) items
into 2m = M bins. Here m + 2 log(T/ε) ≥ 3m − O(1)
and thus the standard analysis requires 3 times more
entropy than the lower bound of (1 − o(1))m. (The
bounds obtained for the specific applications mentioned
below are even larger, sometimes due to the need for a
subconstant ε and sometimes due to the fact items need
to be hashed into several locations.)

We use a variety of general techniques to reduce
the entropy required. These include switching from sta-
tistical difference (equivalently, `1 distance) to Renyi
entropy (equivalently, `2 distance or collision probabil-
ity) throughout the analysis and decoupling the prob-
ability that a hash function is “good” from the unifor-
mity of the hashed values h(Xi). We can reduce the en-
tropy required even further if we use 4-wise independent
hash functions, which also have very fast implementa-
tions [TZ].

Applications. We illustrate our approach with
several specific applications. Here we informally sum-

747

marize the results; definitions and discussions appear in
Sections 3 and 4.

The classic analysis of Knuth [Knu] gives a tight
bound for the insertion time in a hash table with
linear probing in terms of the ‘load’ of the table (the
number of items divided by the size of the table),
under the assumption that an idealized, truly random
hash function is used. Resolving a longstanding open
problem, Pagh, Pagh, and Ruzic [PPR] recently showed
that while pairwise independence does not suffice to
bound the insertion time in terms of the load alone
(for worst-case data), such a bound is possible with 5-
wise independent hashing. However, their bound for 5-
wise independent hash functions is polynomially larger
than the bound for ideal hashing. We show that 2-
universal hashing actually achieves the same asymptotic
performance as ideal hashing, provided that the data
comes from a block source with roughly 4 log M bits of
(Renyi) entropy per item, where M is the size of the
hash table. For 4-wise independent hashing, we only
need roughly 2.5 log M bits of entropy per item.

With the balanced allocation paradigm [ABKU], it
is known that when T items are hashed to T buckets,
with each item being sequentially placed in the least
loaded of d choices (e.g. d = 2), the maximum load is
log log T/ log d + O(1) with high probability. We show
that the same result holds when the hash function is
chosen from a 2-universal hash family, provided the
data items come from a block source with roughly
(d + 2) log T bits of entropy per data item. For 4-wise
independence, the entropy requirement is reduced to
roughly (d + 1) log T .

Bloom filters [Blo] are data structures for approxi-
mately storing sets in which membership tests can result
in false positives with some bounded probability. We be-
gin by showing that there is a constant gap in the false
positive probability for worst-case data when O(1)-wise
independent hash functions are used instead of truly
random hash functions. On the other hand, we show
that if the data comes from a block source with roughly
4 log M bits of (Renyi) entropy per item, where M is
the size of the hash table, then the false positive proba-
bility with 2-universal hashing asymptotically matches
that of ideal hashing. For 4-wise independent hashing,
we only need roughly 3 log M bits of entropy per item.

2 Preliminaries

Notation. [N] denotes the set {1, . . . , N}. All logs
are base 2. For a random variable X and an event E,
X|E denotes X conditioned on E. The support of X
is Supp(X) = {x : Pr[X = x] > 0}. For a set S, US

denotes a random variable uniformly distributed on S.

Hashing. Let H be a multiset of hash functions
h : [N] → [M] and let H be uniformly distributed
over H. We say that H is a truly random family if
H is the set all functions mapping [N] to [M], i.e. the
N random variables {H(x)}x∈[N] are independent and
uniformly distributed over [M]. For s ∈ N, H is s-
wise independent (a.k.a. strongly s-universal [WC]) if
for every sequence of distinct elements x1, . . . , xs ∈ [N],
the random variables H(x1), . . . ,H(xs) are independent
and uniformly distributed over [M]. H is s-universal if
for every sequence of distinct elements x1, . . . , xs ∈ [N],
we have Pr[H(x1) = · · · = H(xs)] ≤ 1/Ms. For a hash
family H mapping [N] → [M] and k ∈ N, we define Hk

to be the family mapping [N] → [M]k consisting of the
functions of the form h(x) = (h1(x), . . . , hk(x)), where
each hi ∈ H. Observe that if H is s-wise independent
(resp., s-universal), then so is Hk. However, description
and computation time for functions in Hk are k times
larger than for H.

3 Hashing Worst-Case Data

In this section, we describe the three main hashing
applications we study in this paper — linear probing,
balanced allocations, and Bloom filters — and describe
mostly known results about what can be achieved for
worst-case data. Here and throughout the paper, where
appropriate we omit proofs because of space. The
relevant proofs can be found in the full version of the
paper (available from the authors’ webpages).

3.1 Linear Probing A hash table using linear prob-
ing stores a sequence x = (x1, . . . , xT) of data items
from [N] using M memory locations. Given a hash func-
tion h : [N] → [M], we place the elements x1, . . . , xT

sequentially as follows. The element xi first attempts
placement at h(xi), and if this location is already filled,
locations h(xi)+1 mod M , h(xi)+2 mod M , and so on
are tried until an empty location is found. The ratio
α = T/M is referred to as the load of the table. The
efficiency of linear probing is measured according to the
insertion time for a new data item. (Other measures,
such as the average time to search for items already in
the table, are also often studied, and our results can be
generalized to these measures as well.)

Definition 3.1. Given h : [N] → [M], a sequence
x = (x1, . . . , xT) of data items from [N] stored via
linear probing using h, we define the insertion time
TimeLP(x, h) to be the value of j such that xT is placed
at location h(xi) + (j − 1) mod M .

It is well known that with ideal hashing, the ex-
pected time can be bounded quite tightly as a function
of the load [Knu].

748

Theorem 3.1. ([Knu]) Let H be a truly random hash
function mapping [N] to [M]. For every sequence x ∈
[N]T , we have E[TimeLP(x,H)] ≤ 1/(1 − α)2, where
α = T/M is the load.

Resolving a longstanding open problem, Pagh,
Pagh, and Ruzic [PPR] recently showed that the ex-
pected lookup time could be bounded in terms of α
using only O(1)-wise independence. Specifically, with
5-wise independence, the expected time for an insertion
is O

(
1

(1−α)3

)
for any sequence x. On the other hand,

in [PPR] it is also shown that there are examples of se-
quences x and pairwise independent hash families such
that the expected time for a lookup is logarithmic in T
(even though the load α is independent of T). In con-
trast, our work demonstrates that pairwise independent
hash functions yield expected lookup times that are as-
ymptotically the same as under the idealized analysis,
assuming there is sufficient entropy in the data items
themselves.

3.2 Balanced Allocations. A hash table using the
balanced allocation paradigm [ABKU] with d ∈ N choices
stores a sequence x = (x1, . . . , xT) ∈ [N]T in an array
of M buckets. Let h be a hash function mapping
[N] to [M]d ∼= [Md], where we view the components
of h(x) as (h1(x), . . . , hd(x)). We place the elements
sequentially by putting xi in the least loaded of the
d buckets h1(xi), . . . , hd(xi) at time i (breaking ties
arbitrarily), where the load of a bucket at time i is the
number elements from x1, . . . , xi−1 placed in it.

Definition 3.2. Given h : [N] → [M]d, a sequence
x = (x1, . . . , xT) of data items from [N] stored via the
balanced allocation paradigm (with d choices) using h,
we define the maximum load MaxLoadBA(x, h) to be the
maximum load of among the buckets at time T + 1.

In the case that the number T of items is the same as
the number M of buckets and we do balanced allocation
with d = 1 choice (i.e. standard load balancing), it
is known that the maximum load is Θ(log T/ log log T)
with high probability. Remarkably, when the number of
choices d is two or larger, the maximum load drops to
be double-logarithmic.

Theorem 3.2. ([ABKU, Vöc]) For every d ≥ 2 and
γ > 0, there is a constant c such the following holds. Let
H be a truly random hash function mapping [N] to [T]d.
For every sequence x ∈ [N]T of distinct data items, we
have

Pr[MaxLoadBA(x,H) >
log log T

log d
+ c] ≤ 1

T γ
.

There are other variations on this scheme, including
the asymmetric version due to Vöcking [Vöc] and cuckoo
hashing [PR]; we choose to study the original setting for
simplicity.

The asymmetric scheme has been recently studied
under explicit functions [Woe], similar to those of [DW].
At this point, we know of no non-trivial upper or lower
bounds for the balanced allocation paradigm using fam-
ilies of hash functions with constant independence, al-
though performance has been tested empirically [BM1].
Such bounds have been a long-standing open question
in this area.

3.3 Bloom Filters A Bloom filter [Blo] represents
a set x = {x1, . . . , xT } where each xi ∈ [N] using an
array of M bits and ` hash functions. For our purposes,
it will be somewhat easier to work with a segmented
Bloom filter, where the M bits are partitioned into `
disjoint subarrays of size M/`, with one subarray for
each hash function. We assume that M/` is an integer.
(This splitting does not substantially change the results
from the standard approach of having all hash functions
map into a single array of size M .) As in the previous
section, we denote the components of a hash function
h : [N] → [M/`]` ∼= [(M/`)`], as providing ` hash values
h(x) = (h1(x), . . . , h`(x)) ∈ [M/`]` in the natural way.
The Bloom filter is initialized by setting all bits to 0,
and then setting the hi(xj)’th bit to be 1 in the i’th
subarray for all i ∈ [`] and j ∈ [T]. Given an element
y, one tests for membership in x by accepting if the
hi(y)’th bit is 1 in the i’th subarray for all i ∈ [`], and
rejecting otherwise. Clearly, if y ∈ x, then the algorithm
will always accept. However, the algorithm may err if
y /∈ x.

Definition 3.3. Given h : [N] → [M/`]` (where `
divides M), a sequence x = (x1, . . . , xT) of data items
from [N] stored in an `-segment Bloom filter using h,
and an additional element y ∈ [N], we define the false
positive predicate FalsePosBF(h, x, y) to be 1 if y 6∈ x
and the membership test accepts. That is, if y /∈ x

yet hi(y) ∈ hi(x) def= {hi(xj) : j = 1, . . . , T} for all
i = 1, . . . , `.

For truly random families of hash functions, it is
easy to compute the false positive probability.

Theorem 3.3. ([Blo]) Let H be a truly random hash
function mapping [N] to [M/`]` (where ` divides M).
For every sequence x ∈ [N]T of data items and every
y /∈ x, we have

Pr[FalsePosBF(H, x, y) = 1] =

(
1−

(
1− `

M

)T
)`

749

≈
(
1− e−`T/M

)`

.

In the typical case that M = Θ(T), the asymptoti-
cally optimal number of hash functions is ` = (M/T) ·
ln 2, and the false positive probability is approximately
2−`.

Below we will describe the kinds of results that can
be proven about Bloom filters on worst-case data using
O(1)-wise independence. But the following more mild
reduction in randomness, using 2 truly random hash
functions instead of `, will be useful later.

Theorem 3.4. ([KM]) Let H = (H1,H2) be a truly
random hash function mapping [N] to [M/`]2, where
M/` is a prime integer. Define H ′ = (H ′

1, . . . , H
′
`) :

[N] → [M/`]` by

H ′
i(w) = H1(w) + (i− 1)H2(w) mod M/`.

Then for every sequence x ∈ [N]T of T data items and
every y /∈ x, we have

Pr[FalsePosBF(H ′, x, y) = 1]

≤
(

1−
(

1− `

M

)T
)`

+ O(1/M).

The restriction to prime integers M/` is not strictly
necessary in general; for more complete statements of
when 2 truly random hash functions suffice, see [KM].

We now turn to the worst-case performance of
Bloom filters under O(1)-wise independence. It is
folklore that 2-universal hash functions can be used
with a constant-factor loss in space efficiency. Indeed,
a union bound shows that Pr[hi(y) ∈ hi(x)] is at most
T ·(`/M), compared to 1−(1−`/M)T in the case of truly
random hash functions. This can be generalized to s-
wise independent families using the inclusion-exclusion
formula, leading to the following bound.

Proposition 3.1. Let s be an even constant. Let H
be an s-universal family mapping [N] to [M/`] (where
` divides M), and let H = (H1, . . . , H`) be a random
hash function from H`. For every sequence x ∈ [N]T of
T ≤ M/` data items and every y /∈ x, we have

Pr[FalsePosBF(H, x, y) = 1]

≤
(

1−
(

1− `

M

)T

+ O

(
`T

M

)s
)`

.

Notice that in the common case that ` = Θ(1)
and M = Θ(T), so that the false positive probability
is constant, the above bound differs from the one for
ideal hashing by an amount that shrinks rapidly with s.

However, when s is constant, the difference remains an
additive constant. Another way of interpreting this is
that to obtain a given guarantee on the false positive
probability using O(1)-wise independence instead of
ideal hashing, one must pay a constant factor in the
space for the Bloom filter. The following proposition
shows that this loss is necessary if we use only O(1)-
wise independence.

Proposition 3.2. Let s be an even constant. For
all N, M, `, T ∈ N such that M/` is a prime power
and T < min{M/`, N}, there exists an (s + 1)-wise
independent family of hash functions H mapping [N]
to [M/`] a sequence x ∈ [N]T of data items, and a
y ∈ [N] \ x, such that if H = (H1, . . . , H`) is a random
hash function from H`, we have

Pr[FalsePosBF(H, x, y) = 1]

≥
(

1−
(

1− `

M

)T

− Ω
(

`T

M

)s
)`

.

4 Hashing Block Sources

4.1 Random Sources We view our data items as
being random variables distributed over a finite set of
size N , which we identify with [N]. We use the following
quantities to measure the amount of randomness in a
data item. For a random variable X, the max probability
of X is

mp(X) = max
x

Pr[X = x].

The collision probability of X is

cp(X) =
∑

x

Pr[X = x]2.

Measuring these quantities is equivalent to measuring
the min-entropy

H∞(X) = min
x

log(1/ Pr[X = x]) = log(1/mp(X))

and the Renyi entropy

H2(X) = log(1/ E
x←X

[Pr[X = x]]) = log(1/cp(X)).

If X is supported on a set of size K, then mp(X) ≥
cp(X) ≥ 1/K (i.e. H∞(X) ≤ H2(X) ≤ log K), with
equality iff X is uniform on its support. It also holds
that mp(X) ≤ cp(X)1/2 (i.e. H∞(X) ≥ H2(X)/2),
so min-entropy and Renyi entropy are always within a
factor of 2 of each other.

We model a sequence of data items as a sequence
(X1, . . . , XT) of correlated random variables where each
item is guaranteed to have some entropy even condi-
tioned on the previous items.

750

Definition 4.1. A sequence of random variables
(X1, . . . , XT) taking values in [N]T is a block source
with collision probability p per block (respectively,
max probability p per block) if for every i ∈
[T] and every (x1, . . . , xi−1) ∈ Supp(X1, . . . , Xi−1),
we have cp(Xi|X1=x1,...,Xi−1=xi−1) ≤ p (respectively,
mp(Xi|X1=x1,...,Xi−1=xi−1) ≤ p

When max probability is used as the measure of
entropy, then this is precisely the model of sources
suggested by Chor and Goldreich [CG] in the literature
on randomness extractors. We will mainly use the
collision probability formulation as the entropy measure,
since it makes our results more general.

4.2 Extracting Randomness A randomness ex-
tractor [NZ] can be viewed as a family of hash func-
tions with the property that for any random variable X
with enough entropy, if we pick a random hash function
h from the family, then h(X) is “close” to being uni-
formly distributed on the range of the hash function.
Randomness extractors are a central object in the the-
ory of pseudorandomness and have many applications in
theoretical computer science. Thus there is a large body
of work on the construction of randomness extractors.
(See the surveys [NT, Sha]). A major emphasis in this
line of work is constructing extractors where it takes
extremely few (e.g. a logarithmic number of) random
bits to choose a hash function from the family. This
parameter is less crucial for us, so instead our emphasis
is on using simple and very efficient hash functions (e.g.
universal hash functions) and minimizing the amount of
entropy needed from the source X. To do this, we will
measure the quality of a hash family in ways that are
tailored to our application, and thus we do not neces-
sarily work with the standard definitions of extractors.

In requiring that the hashed value h(X) be ‘close’
to uniform, the standard definition of an extractor uses
the most natural measure of ‘closeness’. Specifically, for
random variables X and Y , taking values in [N], their
statistical difference is defined as

∆(X, Y) = max
S⊆[N]

|Pr[X ∈ S]− Pr[Y ∈ S]|.

X and Y are called ε-close if ∆(X, Y) ≤ ε.
The classic Leftover Hash Lemma shows that uni-

versal hash functions are randomnness extractors with
respect to statistical difference.

Lemma 4.1. (Leftover Hash Lemma [BBR, ILL])
Let H : [N] → [M] be a random hash function from
a 2-universal family H. For every random variable
X taking values in [N] with cp(X) ≤ 1/K, we have
cp(H,H(X)) ≤ (1/|H|) · (1/M + 1/K), and thus
(H,H(X)) is (1/2) ·

√
M/K-close to (H, U[M]).

Notice that the above lemma says that the joint
distribution of (H, H(X)) is ε-close to uniform; a family
of hash functions achieving this property is referred to
as a “strong” randomness extractor. Up to some loss in
the parameter ε (which we will later want to save), this
strong extraction property is equivalent to saying that
with high probability over h ← H, the random variable
h(X) is close to uniform. The above formulation of
the Leftover Hash Lemma, passing through collision
probability, is attributed to Rackoff [IZ]. It relies on the
fact that if the collision probability of a random variable
is close to that uniform distribution, then the random
variable is close to uniform in statistical difference.
This fact is captured (in a more general form) by the
following lemma.

Lemma 4.2. If X takes values in [M] and cp(X) ≤
1/M + 1/K, then:

1. For every function f : [M] → R,

|E[f(X)]− µ| ≤ σ ·
√

M/K,

where µ is the expectation of f(U[M]) and σ is its
standard deviation. In particular, if f takes values
in the interval [a, b], then

|E[f(X)]− µ| ≤
√

(µ− a) · (b− µ) ·
√

M/K.

2. X is (1/2) ·
√

M/K-close to U[M].

While the bound on statistical difference given
by Item 2 is simpler to state, Item 1 often provides
substantially stronger bounds. To see this, suppose
there is a bad event S of vanishing density, i.e. |S| =
o(M), and we would like to say that Pr[X ∈ S] =
o(1). Using Item 2, we would need K = ω(M), i.e.
cp(X) = (1 + o(1))/M . But applying Item 1 with
f equal to the characteristic function of S, we get
the desired conclusion assuming only K = O(M), i.e.
cp(X) = O(1/M).

The classic approach to extracting randomness from
block sources is to simply apply a (strong) randomness
extractor, like the one in Lemma 4.1, to each block of
the source. The distance from the uniform distribution
grows linearly with the number of blocks.

Theorem 4.1. ([CG, Zuc]) Let H : [N] → [M]
be a random hash function from a 2-universal fam-
ily H. For for every block source (X1, . . . , XT) with
collision probability 1/K per block, the random vari-
able (H, H(X1), . . . , H(XT)) is (T/2) ·

√
M/K-close to

(H, U[M]T).

751

Thus, if we have enough entropy per block, univer-
sal hash functions behave just like ideal hash functions.
How much entropy do we need? To achieve an error
ε with the above theorem, we need K ≥ MT 2/(4ε2).
In the next section, we will explore how to improve the
quadratic dependence on ε and T .

4.3 Optimized Block-Source Extraction Our
approach to improving Theorem 4.1 is to change the
order of steps in the analysis. As outlined above, Theo-
rem 4.1 is proven by bounding the collision probability
of each hashed block, passing to statistical difference via
Lemma 4.2, and then summing the statistical difference
over the blocks. Our approach is to try to work with
collision probability for as much as the proof as possi-
ble, and only pass to statistical difference at the end if
needed.

Theorem 4.2. Let H : [N] → [M] be a random hash
function from a 2-universal family H. For every block
source (X1, . . . , XT) with collision probability 1/K per
block and every ε > 0, the random variable Y =
(H(X1), . . . , H(XT)) is ε-close to a block source Z with
collision probability 1/M +T/(εK) per block. In partic-
ular, if K ≥ MT 2/ε, then Z has collision probability at
most (1 + 2MT 2/(εK))/MT .

Note that the conclusion of this theorem is different
than that of Theorem 4.1, in that we do not claim
that Y is close to uniform in statistical difference.
However, if K ≥ MT/ε, then each block of Z has
collision probability within a constant factor of the
uniform distribution (conditioned on previous ones),
and this property suffices for some applications (using
Lemma 4.2, Item 1). In addition, if K ≥ MT 2/ε,
then globally, Z is also has collision probability within
a constant factor of uniform.2 Lemma 4.2 (Item 2)
can then be used to deduce that Y is close to uniform
in statistical difference, but the resulting bound is no
better than the classic one (Theorem 4.1).

The approach to proving the theorem is as follows.
Intuitively, the Leftover Hash Lemma (Lemma 4.1) tells
us that each hashed block H(Xi) contributes collision
probability at most 1/M + 1/K, on average over the
choice of the hash function H. We can use a Markov
argument to say that the collision probability of each
block is at most 1/M +T/(εK) with probability at least
1− ε/T over the choice of the hash function. Taking a
union bound, the hash function is good for all blocks
with probability at least 1− ε.

Using 4-wise independent hash functions, we can
obtain the following stronger results.

2We do not know whether this quadratic dependence on T is
necessary, and it would be interesting to remove it.

Theorem 4.3. Let H : [N] → [M] be a random hash
function from a 4-wise independent family H. For
every block source (X1, . . . , XT) with collision prob-
ability 1/K per block, the random variable Y =
(H(X1), . . . , H(XT)) has the following properties.

1. For every ε > 0, Y is ε-close to a block source Z
with collision probability 1/M +1/K +

√
2T/(εM) ·

1/K per block. In particular, if K ≥ MT +√
2MT 3/ε, then Z has collision probability at most

(1 + γ)/MT , for γ = 2 · (MT +
√

2MT 3/ε)/K.

2. Y is O((MT/K)1/2 + (MT 3/K2)1/5)-close to
U[M]T .

The improvement over Theorem 4.2 is that we only
need K to be on the order of max{M,

√
MT/ε} (as

opposed to MT) for each block of Z to have collision
probability within a constant factor of uniform. More-
over, here we also sometimes obtain an improvement
over classic block-source extraction (Theorem 4.1) in
the total statistical difference from uniform. For exam-
ple, in the common case that T = Θ(M), this theo-
rem gives a statistical difference bound of O(M2/K)2/5

instead of O(M3/K)1/2; this is an improvement when
K = o(M7).

The key idea in the proof is to show that, with
4-wise independence, the collision probability of each
hashed block is concentrated around its expectation,
which is at most 1/M + 1/K. This concentration is
obtained by bounding the variance.

5 Applications

5.1 Linear Probing An immediate application of
Theorem 4.1, using just a pairwise independent hash
family, gives that if K ≥ MT 2/(2ε)2, the resulting
distribution of the element hashes is ε-close to uniform.
The effect of the ε statistical difference on the expected
insertion time is at most εT , because the maximum
insertion time is T . That is, if we let EU be the expected
time for an insertion when using a truly random hash
function, and EP be the expected time for an insertion
using pairwise independent hash functions, we have

EP ≤ EU + εT.

A natural choice is ε = o(1/T), so that the εT term
is lower order, giving that K needs to be ω(MT 4) =
ω(M5) in the standard case where T = αM for a
constant α ∈ (0, 1) (which we assume henceforth). An
alternative interpretation is that with probability 1− ε,
our hash table behaves exactly as though a truly random
hash function was used. In some applications, constant
ε may be sufficient, in which case using Theorem 4.3
K = O(M2) suffices.

752

Better results can be obtained by applying
Lemma 4.2, in conjunction with Theorem 4.2 or Theo-
rem 4.3. In particular, for linear probing, the standard
deviation σ of the insertion time is known (see, e.g.,
[GB, p. 52]) and is O(1/(1 − α)2). With a 2-universal
family, as long as K ≥ MT 2/ε, from Theorem 4.2 the
resulting hash values are ε-close to a block source with
collision probability at most (1+2MT 2/(εK))/MT . Us-
ing this, we apply Lemma 4.2 to bound the expected
insertion time as

EP ≤ EU + εT + σ

√
2MT 2

εK
.

Choosing ε = o(1/T) gives that EP and EU are the same
up to lower order terms when K is ω(M4). Theorem 4.3
gives a further improvement; for K ≥ MT +

√
2MT 2/ε,

we have

EP ≤ EU + εT + σ

√
2MT + 2

√
2MT 3/ε

K
.

Choosing ε = o(1/T) now allows for K to be only
ω(M5/2).

In other words, the Renyi entropy needs only to
be 2.5 log M + ω(1) bits when using 4-wise independent
hash functions, and 4 log M + ω(1) for 2-universal hash
functions. These numbers seem quite reasonable for
practical situations. We formalize the result for the case
of 2-universal hash functions as follows:

Theorem 5.1. Let H be a chosen at random from a
2-universal hash family H mapping [N] to [M]. For
every block source X taking values in [N]T with collision
probability at most 1/K and where K ≥ MT 2/ε, we
have

E[TimeLP(X,H)] ≤ 1/(1− α)2 + εT + σ

√
2MT 2

εK
.

Here α = T/M is the load and σ is the standard
deviation in the insertion time in the case of truly
random hash functions.

5.2 Balanced Allocations By combining the
known analysis for ideal hashing (Theorem 3.2), our
optimized bounds for block-source extraction (Theo-
rems 4.2 and 4.3), and the effect of collision probability
on expectations (Lemma 4.2), we obtain:

Theorem 5.2. For every d ≥ 2 and γ > 0, there is a
constant c such the following holds. Let H be chosen at
random from a 2-universal hash family H mapping [N]
to [T]d. For every block source X taking values in [N]T

with collision probability at most 1/2T d+2+γ per block,
we have

Pr[MaxLoadBA(X, H) >
log log T

log d
+ c] ≤ 1

T γ
.

Theorem 5.3. For every d ≥ 2 and γ > 0, there is
a constant c such the following holds. Let H be cho-
sen at random from a 4-wise independent hash fam-
ily H mapping [N] to [T]d. For every block source X
taking values in [N]T with collision probability at most
1/(T d+1 + 2T (d+3+γ)/2) per block, we have

Pr[MaxLoadBA(X, H) >
log log T

log d
+ c] ≤ 1

T γ
.

5.3 Bloom Filters We consider there the following
setting: our block source takes on values in [N]T+1,
producing a collection (x1, . . . , xT , y) = (x, y), where
x constitutes the set represented by the filter, and y
represents an additional element that will not be equal
to any element of x (with high probability). We could
apply a hash function h : [N] → [M/`]` ∼= [(M/`)`] to
obtain ` hash values for each element. However, for
brevity we will limit ourselves here to results taking
advantage of [KM], as in Theorem 3.4, which utilizes
only two hash functions two generate ` hash values,
reducing the amount of randomness required.

If we allow the false positive probability to increase
by some constant ε > 0 over truly random hash func-
tions, we can utilize Lemma 4.2 along with Theorems 4.1
and 4.3 to obtain the following parallels to Theorem 3.4:

Theorem 5.4. Let H = (H1,H2) be chosen at ran-
dom from a 2-universal hash family H mapping [N] to
[M/`]2, where M/` is a prime integer. Define H ′ =
(H ′

1, . . . ,H
′
`) : [N] → [M/`]` by H ′

i(w) = H1(w) + (i −
1)H2(w) mod M/`. For every ε > 1/M and every block
source (X,Y) taking values in [N]T × [N] ∼= [N]T+1

with collision probability at most ε2`2/M2T 2 per block,
we have

Pr[FalsePosBF(H ′, X, Y) = 1]

≤
(

1−
(

1− `

M

)T
)`

+ O(ε).

Theorem 5.5. Let H = (H1,H2) be chosen at ran-
dom from a 4-wise independent hash family H map-
ping [N] to [M/`]2, where M/` is a prime integer. De-
fine H ′ = (H ′

1, . . . , H
′
`) : [N] → [M/`]` by H ′

i(w) =
H1(w) + (i − 1)H2(w) mod M/`. For every ε >
1/M and every block source (X, Y) taking values in
[N]T × [N] ∼= [N]T+1 with collision probability at most
min{ε2`2/(M2T), ε5/2`/(MT 3/2)} per block, we have

Pr[FalsePosBF(H ′, x, y) = 1]

753

≤
(

1−
(

1− `

M

)T
)`

+ O(ε).

If we set ε = o(1), then we obtain the same asymptotic
false positive probabilities as with truly random hash
functions. When T = Θ(M),the Renyi entropy per
block needs only to be 3 log M + ω(1) bits when using
4-wise independent hash functions, and 4 log M + ω(1)
for 2-universal hash functions.

6 Alternative Approaches

The results we have described in Section 5 rely on very
general arguments, referring to the collision probability
of the entire sequence of hashed data values. We sug-
gest, however, that it may prove useful in the future to
view the results of Section 4 as a collection of tools that
can be applied in various ways to specific applications.
For example, the fact derived in Theorems 4.2 and 4.3
that the hashed values are close to a block source with
bounded collision probability per block may yield im-
proved results in some cases.

We sketch an example of how these results can be
applied to more specific arguments for an application.
In the standard layered induction argument for balanced
allocations [ABKU], the following key step is used.
Suppose that there are at most βiT buckets with load
at least i throughout the process. Then (using truly
random hash functions) the probability that an element
with d choices lands in a bin with i or more balls already
present is bounded above by (βi)d. When using 2-
universal hash functions, we can bound this probability,
but with slightly weaker results. The choices for an
element correspond to the hash of one of the blocks
from the input block source. Let S be the set of size
at most (βi)d possible hash values for the element’s
choices that would place the element in a bin with i
or more balls. We can bound the probability that the
element hashes to a value in S by bounding the collision
probability per block (via Theorem 4.2) and applying
Lemma 4.2 with f equal to the characteristic function
of S. We have applied this technique to generalize
the standard layered induction proof of [ABKU] to this
setting. This approach turns out to require slightly less
entropy from the source for 2-universal hash functions
than Theorem 5.2, but the loss incurred in applying
Lemma 4.2 means that the analysis only works for
d ≥ 3 choices and the the maximum load changes by
a constant factor (although the O(log log n) behavior is
still apparent). We omit the details.

7 Conclusion

We have started to build a link between previous work
on randomness extraction and the practical perfor-

mance of simple hash functions, specifically 2-universal
hash functions. While we expect that our results can be
further improved, they already give bounds that appear
to apply to many realistic hashing scenarios. In the fu-
ture, we hope that there will be a collaboration between
theory and systems researchers aimed at fully under-
standing the behavior of hashing in practice. Indeed,
while our view of data as coming from a block source
is a natural initial suggestion, theory–systems interac-
tion could lead to more refined and realistic models for
real-life data (and in particular, provide estimates for
the amount of entropy in the data). A complementary
direction is to show that hash functions used in practice
(such as those based on cryptographic functions, which
may not even be 2-universal) behave similarly to truly
random hash functions for these data models. Some
results in this direction can be found in [DGH+].

Acknowledgments

We thank Adam Kirsch for his careful reading of and
helpful comments on the paper.

References

[ABKU] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced Allocations. SIAM Journal on Computing,
29(1):180–200, 2000.

[BBR] C. H. Bennett, G. Brassard, and J.-M. Robert.
Privacy amplification by public discussion. SIAM
Journal on Computing, 17(2):210–229, 1988. Special
issue on cryptography.

[Blo] B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[BS] A. Blum and J. Spencer. Coloring random and semi-
random k-colorable graphs. Journal of Algorithms,
19(2):204–234, 1995.

[BM1] A. Broder and M. Mitzenmacher. Using multiple
hash functions to improve IP lookups. In INFOCOM
2001: Proceedings of the Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications
Societies, pages 1454–1463, 2001.

[BM2] A. Broder and M. Mitzenmacher. Network Applica-
tions of Bloom Filters: A Survey. Internet Mathemat-
ics, 1(4):485–509, 2005.

[CW] J. L. Carter and M. N. Wegman. Universal classes
of hash functions. Journal of Computer and System
Sciences, 18(2):143–154, 1979.

[CG] B. Chor and O. Goldreich. Unbiased Bits from Sources
of Weak Randomness and Probabilistic Communica-
tion Complexity. SIAM J. Comput., 17(2):230–261,
Apr. 1988.

[DKSL] S. Dharmapurikar, P. Krishnamurthy, T. Sproull,
and J. Lockwood. Deep packet inspection using paral-
lel bloom filters. IEEE Micro, 24(1):52–61, 2004.

754

[DW] M. Dietzfelbinger and P. Woelfel. Almost random
graphs with simple hash functions. In STOC ’03:
Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 629–638, New York,
NY, USA, 2003. ACM Press.

[DGH+] Y. Dodis, R. Gennaro, J. H̊astad, H. Kraw-
czyk, and T. Rabin. Randomness Extraction and
Key Derivation Using the CBC, Cascade and HMAC
Modes. In M. K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 494–
510. Springer, 2004.

[GB] G. Gonnet and R. Baeza-Yates. Handbook of algo-
rithms and data structures: in Pascal and C. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1991.

[ILL] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-
random Generation from one-way functions (Extended
Abstracts). In Proceedings of the Twenty First Annual
ACM Symposium on Theory of Computing, pages 12–
24, Seattle, Washington, 15–17 May 1989.

[IZ] R. Impagliazzo and D. Zuckerman. How to Recycle
Random Bits. In 30th Annual Symposium on Foun-
dations of Computer Science, pages 248–253, Research
Triangle Park, North Carolina, 30 Oct.–1 Nov. 1989.
IEEE.

[KM] A. Kirsch and M. Mitzenmacher. Less Hashing, Same
Performance: Building a Better Bloom Filter. In
Proceedings of the 14th Annual European Symposium
on Algorithms, pages 456–467, 2006.

[Knu] D. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison Wesley
Longman Publishing Co., Inc. Redwood City, CA,
USA, 1998.

[Mut] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[NT] N. Nisan and A. Ta-Shma. Extracting Randomness: A
Survey and New Constructions. Journal of Computer
and System Sciences, 58(1):148–173, 1999.

[NZ] N. Nisan and D. Zuckerman. Randomness is Linear in
Space. J. Comput. Syst. Sci., 52(1):43–52, Feb. 1996.

[OP] A. Ostlin and R. Pagh. Uniform hashing in constant
time and linear space. Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing,
pages 622–628, 2003.

[PPR] A. Pagh, R. Pagh, and M. Ruzic. Linear probing with
constant independence. In STOC ’07: Proceedings of
the thirty-ninth annual ACM symposium on Theory of
computing, pages 318–327, New York, NY, USA, 2007.
ACM Press.

[PR] R. Pagh and F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[Ram1] M. V. Ramakrishna. Hashing practice: analysis
of hashing and universal hashing. In SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD international
conference on Management of data, pages 191–199,
New York, NY, USA, 1988. ACM Press.

[Ram2] M. V. Ramakrishna. Practical performance of

Bloom filters and parallel free-text searching. Com-
munications of the ACM, 32(10):1237–1239, 1989.

[RFB] M. V. Ramakrishna, E. Fu, and E. Bahcekapili.
Efficient Hardware Hashing Functions for High
Performance Computers. IEEE Trans. Comput.,
46(12):1378–1381, 1997.

[SV] M. Santha and U. V. Vazirani. Generating
Quasi-random Sequences from Semi-random Sources.
J. Comput. Syst. Sci., 33(1):75–87, Aug. 1986.

[SS] J. P. Schmidt and A. Siegel. The Analysis of Closed
Hashing under Limited Randomness (Extended Ab-
stract). In STOC, pages 224–234. ACM, 1990.

[Sha] R. Shaltiel. Recent Developments in Explicit Con-
structions of Extractors. Bulletin of the European As-
sociation for Theoretical Computer Science, 77:67–95,
June 2002.

[Sie] A. Siegel. On universal classes of extremely random
constant-time hash functions. SIAM Journal on Com-
puting, 33(3):505–543 (electronic), 2004.

[ST] D. A. Spielman and S.-H. Teng. Smoothed analysis of
algorithms: why the simplex algorithm usually takes
polynomial time. Journal of the ACM, 51(3):385–463
(electronic), 2004.

[TZ] M. Thorup and Y. Zhang. Tabulation based 4-
universal hashing with applications to second moment
estimation. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
615–624 (electronic), New York, 2004. ACM.

[Vöc] B. Vöcking. How asymmetry helps load balancing.
Journal of the ACM, 50(4):568–589, 2003.

[WC] M. N. Wegman and J. L. Carter. New hash functions
and their use in authentication and set equality. Jour-
nal of Computer and System Sciences, 22(3):265–279,
1981. Special issue dedicated to Michael Machtey.

[Woe] P. Woelfel. Asymmetric balanced allocation with
simple hash functions. In SODA ’06: Proceedings
of the seventeenth annual ACM-SIAM symposium on
Discrete algorithms, pages 424–433, New York, NY,
USA, 2006. ACM Press.

[Zuc] D. Zuckerman. Simulating BPP Using a General
Weak Random Source. Algorithmica, 16(4/5):367–391,
Oct./Nov. 1996.

755

