Announcements

- Start recording
- Scribe: write 4-6 scribes to produce one set of notes
- My OH: Mon 12:30-1:30, Thu 9-10
- TC Hybrid section: Mon 2-3, Tue 8-9, Wed 5-6, Thu 5:30-6:30
- PS 3 posted
- If Zoom goes down, check Piazza
- Sync whiteboard
- Post on Piazza by tomorrow to find project partners
- No Jamboard or emails today

Agenda

- Expansion of random graphs
- Random walks on expanders
- Operations on expanders
Measures of Expansion

Claim: Let N be an infinite family of regular, undirected, binary, constant-degree graphs.

The following are equivalent:
1) $\exists \epsilon > 0$ s.t. every $G \in N$ has spectral expansion at least ϵ, i.e., $\varnothing(G) = \min \{\lambda_2(G), -\lambda_3(G)\} \leq 1-\epsilon$

2) $\exists \epsilon > 0$ s.t. every $G \in N$ is an $(n/2, \epsilon)$-expander, i.e., $\forall S \subseteq V$, $|S| \leq n/2$, $|\partial(S)| \geq \epsilon \cdot |S|$

3) $\exists \epsilon > 0$ s.t. every $G \in N$ is an $(n/2, \epsilon)$-regular expander, i.e., $\forall S \subseteq V$, $|S| \leq n/2$, $|\partial(S)| \geq (1+\epsilon) \cdot |S|$

Exander Mixing Lemma + Converse

If a regular graph G has spectral expansion $\mu = 1-\omega$

Then $\omega = O(\sqrt{\mu} \log(1/\delta))$

$\forall S \subseteq V$, $|S| \leq n$, $\Pi = S \cup \partial(S)$

$|e(S,T)| / |S| \leq \omega \leq \Theta \sqrt{n \cdot (1-\omega) \cdot \beta \cdot (\gamma - \beta)}$
Existence of Expanders

A uniformly random \(d \)-regular graph is a very good expander w.h.p.

- Vertex expansion of \(d \)-regular tree
 \(\lambda_d = \frac{d}{d-1} \)
 - vertex expansion
 \(\lambda_d > 0 \)
 \(\left(\frac{n}{2}, 1 + \delta_d \right) \)
 - vertex expansion
 \(\delta_d > 0 \)
 \(\delta_d \to 1 \) as \(d \to \infty \)

Proof idea:
- For each set \(S \) of size \(k \)
 - \(\Pr \left[S \text{ does not expand much} \right] \leq \frac{1}{(n/k)} \)
- Union bound over sets \(S \)

Spectral Expansion:
\[
\omega = \frac{2\sqrt{d-1}}{d} + \epsilon
\]

- Largest eigenvalue of \(d \)-regular tree

Proof idea:
- \(\text{Tr} \left(W^2b \right) = \sum_{j=1}^{\infty} w_{j}^{2b} \geq 1 + \omega(6)^{2b} \)

- \(\Pr \left[\omega(6) \geq \omega \right] \leq \frac{6}{\epsilon} \left[\text{Tr} \left(W^{2b} \right) - 1 \right] \)

- \(\text{Tr} \left(W^{2b} \right) = \sum_{a=1}^{c} W_{a,a}^{2b} = \Pr \left[\text{walk starts at } u, \text{ ends at } v \right] \quad \text{c.u. at } v \geq 2\delta \)
Goal: show \(P[\text{rw. at least } 2t \text{ starts from } a] \leq \frac{1}{n} + \frac{1}{n^{0.5}} \)
for \(t = O(\log n) \)

See Spielman Ch. 8 for random dense graphs. \(G(n, p) \)

Ramanujan Graphs: \(\omega \leq \frac{2 \sqrt{d-1}}{d} \) \[\text{[no exp!] \]}

- Not known that random graphs have this whp.
- Explicit constructions from deep number theory (relying on proven "Ramanujan Conjectures")
- Bipartite Ramanujan graphs recently proved (2015+) to exist using probabilistic argument that only establishes \(R > 0 \)

[see Spielman Part VII]
Random Walks on Expanders

Motivating example: Power Method

\[M \text{ psd } \implies \text{largest eigenvalue } \lambda. \]

1. choose \(x \triangleq \mathcal{E}(n) \)
2. output \(y = M^k x \quad \text{for } k = O\left(\frac{\log(n/\varepsilon)}{\varepsilon^2} \right) \)

w.p. \(\geq \frac{3}{16} \) on \(x \),

\[\frac{y^T M y}{y^T y} \geq (1-\varepsilon) \cdot \lambda. \]

Reducing failure probability

- Repeat \(t \) times w/ \(x^{(1)}, \ldots, x^{(t)} \)
- Compute \(y^{(1)} = M^k x^{(1)}, \ldots, y^{(t)} = M^k x^{(t)} \)
- Output \(y = y^{(t)} \) maximizing \(\frac{y^{(t)^T M y^{(t)}}}{(y^{(t)})^T y^{(t)}} \)
\[\Pr \left[\frac{y^T M y}{y^T y} < (1-\varepsilon) \mu_1 \right] \leq \left(\frac{13}{16} \right)^t \]

\[= 2^{-\Omega(n)} \]

\[\text{for } t = O(n) \]

random bits used = \(t \cdot n = O(n^2) \)

Can we do better?

- choose \(x^{(1)} \), ..., \(x^{(t)} \) via a random walk on an expander \(G = (V, E) \)

\[N = |V| = 2^n \]

\[V \rightarrow 3 \pm 13^n \]

- choose \(x^{(1)} \) \(\in \) \(V \)

\[x^{(2)} \leftarrow \{ x^{(1)} \text{'s d neighbours} \} \]

\[x^{(13)} \leftarrow \frac{3}{4} x^{(2)} \text{'s d neighbours} \]

\[: \]

\[x^{(t)} \leftarrow \frac{3}{4} x^{(t-1)} \text{'s d neighbours} \]
Random bits = \(n + O(t \log d) \)

\[\approx O(n) \]

\[t = O(d) \quad d = O(1) \]

Does error still reduce?

\[B = \sum_{i=1}^{X} \mathbb{1}_{x \in B^n} : \text{for } y = M^k \quad \frac{y^T M y}{y^T y} < (1-\epsilon) x_i \]

\[u = u(B) = \frac{|B|}{|V|} \leq \frac{13}{16} \]

Thm: If \(G \) has spectral expansion \(\kappa = 1 - \omega \) and \(V_1, \ldots, V_b \) are a random walk on \(B \) on \(G \) with uniform start vertex \(V \), then

\[\Pr \left[\bigwedge_{i=1}^{b} \left(N_i \in B \right) \right] \leq \left(u + \omega \cdot (1-u) \right)^b \]

\[V_1 \epsilon B \land V_2 \epsilon B \land \ldots \land V_b \epsilon B \leq 2^{-\Omega(b)} \text{ for constants } u, \omega < 1 \]
Proof:

\[W = \text{random walk matrix} \]
\[P = \text{diag } (I_B) = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \]
\[u = \frac{1}{\sqrt{N}} \]

\[P^t \left[\sum_{i=1}^t (N \cdot \sigma B) \right] = \left\| (PW)^t Pu \right\|_1 \leq \frac{1}{\sqrt{N}} \left\| (PW)^t Pu \right\|_2 \leq \frac{1}{\sqrt{N}} \|Pu\| \leq \sqrt{N} \cdot \|PW\|^{-b} \|Pu\| \leq \sqrt{N} \cdot (n + \omega \cdot (1 - n))^b \cdot \sqrt{N} \]

Def (spectral norm):

\[\|M\| = \max_{x \neq 0} \frac{\|Mx\|}{\|x\|} = \text{largest singular value of } M \]

Matrix Decomposition

Lemma: \(G \) has spectral expansion \(\lambda, \mu \)

\[W = \lambda J + (1 - \lambda) E \]

where \(J = \text{all } 1 \text{ matrix} \)

and \(\|E\| \leq 1 \)
Thus: \[\| PWP \| = \| \frac{\gamma PJP + (1-\gamma)PEP}{\gamma (PJP) + (1-\gamma) EPE} \| \leq \gamma \cdot \| PJP \| + (1-\gamma) \cdot 1 \]

\[= \mu + \omega \cdot (1-\mu) \]

\[PJP = \left(\sum_{J \in X} x_J \right) \cdot \frac{1_B}{N} \]

There is also a Chernoff bound for
exponential walks \rightarrow randomness - efficiency
time reduction for randomized algorithms
w/2-sided errors.
Explicit Constructions of Expanders

Goal: intrinsic family of graphs $\mathcal{G} = \{G_i\}_i$ s.t.

- d is a constant s.t. each G_i is d-regular
- For all $\gamma > 0$ s.t. each G_i has spectral expn γ

- Given $a \in E_1, \ldots, n_i \in \mathbb{Z}$ and $j \in E_1, \ldots, d_i$

 can compute j^{th} neighbor of vertex a in G_i
 in time poly($\log n_i$)

- The family $\{n_i\}$ of sizes is not too sparse

 \implies can convert into a family of expanders of all sizes

$n_i = \#$ vertices in G_i
Example:

- Root of expasion: deep number theory

Our Approach:

- Start w/ a "constant-sized expander"
 eg from ps3 problem 4
- Repeatedly apply graph ops to
 get larger expanders
\((n, d, \lambda)\) - graph: \(n\) vertices, degree \(d\), spectral expansion \(\geq \lambda\)

Squaring: \((n, d, \lambda) \rightarrow (n, d^2, \lambda^2)\)

Tensoring: \((n, d, \lambda) \rightarrow (n^2, d^2, \lambda^2)\)

\(G_1 \otimes G_2\) : vertex set \(V = V_1 \times V_2\)

edge weights

\[W \quad = \quad W_{a_1 b_1} W_{a_2 b_2} \]

\((a_1, a_2), (b_1, b_2)\)

- adjacency matrix \(M_1 \otimes M_2\)
- random-walk matrix \(W_1 \otimes W_2\)

eigenvalues \(\alpha, \alpha_2\) s.t.

\(\alpha_1\) eigen of \(W_1\), \(\alpha_2\) e-val of \(W_2\)