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these mechanisms, privacy is treated separately from truthfulness; it is not incorporated in players’ utility
functions (and doing so has been shown to lead to nontruthfulness in some cases). In this work, we propose
a new, general way of modeling privacy in players’ utility functions. Specifically, we only assume that if an
outcome o has the property that any report of player i would have led to o with approximately the same
probability, then o has a small privacy cost to player i. We give three mechanisms that are truthful with
respect to our modeling of privacy: for an election between two candidates, for a discrete version of the facility
location problem, and for a general social choice problem with discrete utilities (via a VCG-like mechanism).
As the number n of players increases, the social welfare achieved by our mechanisms approaches optimal
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Categories and Subject Descriptors: F.0 [Theory of Computation]: General; J.4 [Social and Behavioral
Sciences]: Economics

General Terms: Theory, Economics

Additional Key Words and Phrases: Differential privacy, mechanism design, truthfulness, social choice, VCG

ACM Reference Format:
Yiling Chen, Stephen Chong, Ian A. Kash, Tal Moran, and Salil Vadhan. 2016. Truthful mechanisms for
agents that value privacy. ACM Trans. Econ. Comput. 4, 3, Article 13 (March 2016), 30 pages.
DOI: http://dx.doi.org/10.1145/2892555

1. INTRODUCTION

In this article, we examine the interaction between mechanism design and differential
privacy. In particular, we explicitly model privacy in players’ utility functions and
design truthful mechanisms with respect to it. Our work is motivated by considerations
in both fields.

In mechanism design, it has long been recognized that players may not behave as
predicted due to traditional incentive analysis out of concern for privacy: in addition to
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having preferences about the outcome of a mechanism (e.g., who wins an auction, where
a hospital is located), they may also be concerned about what others learn about their
private information (e.g., how much they value the auctioned good, whether they have
some medical condition that makes them care more about the hospital’s location). The
latter concerns are not modeled in most works on mechanism design, and it is natural
to try to bring the new models and techniques of differential privacy to bear on them.

Differential privacy [Dwork et al. 2006] is a notion developed to capture privacy
when performing statistical analyses of databases. Informally, a randomized algorithm
is differentially private if changing a single individual’s data does not “substantially”
change the output distribution of the algorithm. Thus, differential privacy is not an
absolute notion, but rather a quantitative one that needs to be weighed against other
objectives. Indeed, differentially private algorithms typically offer a tradeoff between
the level of privacy offered to individuals in a database and the accuracy of statistics
computed on the database, which we can think of as a “global” objective to be optimized.
However, it is also of interest to consider how privacy should be weighed against the
objectives of the individuals themselves. Mechanism design provides a natural setting
in which to consider such tradeoffs. Attempting to model and reason about privacy in
the context of mechanism design seems likely to lead to an improved understanding
about the meaning and value of privacy.

1.1. Previous Work

The first work bringing together differential privacy and mechanism design was by
McSherry and Talwar [2007]. They showed how to use differential privacy as a tool for
mechanism design. By definition, differentially private algorithms are insensitive to
individuals’ inputs; a change in a single individual’s input has only a small effect on the
output distribution of the algorithm. Thus, if a mechanism is differentially private (and
players have bounded utility functions), it immediately follows that the mechanism is
approximately truthful. That is, reporting untruthfully can only provide a small gain
in a player’s utility. With this observation, McSherry and Talwar showed how tools
from differential privacy allow construction of approximately truthful mechanisms for
many problems, including ones where exact truthfulness is impossible.

However, as pointed out by Nissim, Smorodinsky, and Tennenholtz [2012b], the ap-
proximate truthfulness achieved by McSherry and Talwar [2007] may not be a satisfac-
tory solution concept. While differential privacy can guarantee that a player will gain
arbitrarily little by lying, it also makes the potential gain from telling the truth equally
small. Thus, players may choose to lie in order to protect their privacy. Even worse, as
shown by an example in Nissim et al. [2012b], in some cases, misreporting is a domi-
nant strategy of the game. Thus, it is difficult to predict the outcome and “global” ob-
jectives such as social welfare of differentially private mechanisms. Motivated by this,
Nissim et al. [2012b] show how to modify some of the mechanisms of McSherry and
Talwar [2007] to provide exact truthfulness. To do so, however, they sacrifice differential
privacy and/or augment the standard mechanism design framework so that the mecha-
nism can restrict the way in which players can take advantage of the selected outcome.

A recent paper by Xiao [2011, 2013] shows how to remedy this deficiency and con-
struct mechanisms that simultaneously achieve exact truthfulness and differential
privacy. Xiao’s paper also points out that even this combination may not be sufficient
for getting players that value privacy to report truthfully. Indeed, exact truthfulness
only means that a player weakly prefers to tell the truth. Lying might not reduce
the player’s utility at all (and differential privacy implies that it can only reduce the
player’s utility by at most a small amount). On the other hand, differential privacy
does not guarantee “perfect” privacy protection, so it is possible that a player’s concern
for privacy may still outweigh the small or zero benefit from being truthful.
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To address this, Xiao advocated incorporating privacy directly into the players’ util-
ity functions and seeking mechanisms that are truthful when taking the combined
utilities into account. He proposed to measure privacy cost as the mutual informa-
tion between a player’s type (assumed to come from some prior distribution) and the
outcome of the mechanism.1 Using this measure, he showed that his mechanism does
not remain truthful when incorporating privacy into the utility functions and left as
an open problem to construct mechanisms that do. The difficulty is that we can only
incentivize truthfulness by giving players an influence on the outcome, but such an
influence also leads to privacy costs, which may incentivize lying. Reconciling this ten-
sion requires finding models and mechanisms where the privacy costs can be shown to
be quantitatively dominated by the outcome-utility benefits of truthfulness.

1.2. Our Contributions

In this article, we propose a new, more general way of modeling privacy in players’
utility functions. Unlike Xiao’s mutual information measure, our model does not
require assuming a prior on players’ types and is instead a pointwise model: we simply
assume that if an outcome o has the property that any report of player i would have
led to o with approximately the same probability, then o has a small privacy cost to
player i. One motivation for this assumption is that such an outcome o will induce only
a small change in a Bayesian adversary’s beliefs about player i (conditioned on the
other players’ reports). (This is inspired by a Bayesian interpretation of differential
privacy, due to Dwork and McSherry and described in Kasiviswanathan and Smith
[2008].) While Xiao’s mutual information measure is not strictly a special case of
our model, we show (in the appendix) that truthfulness with respect to our modeling
implies truthfulness with respect to Xiao’s.

With this modeling, we show that it is possible to construct mechanisms where the
privacy costs are dominated by the outcome-utility benefits of truthfulness. Specifically,
we give three mechanisms that are truthful with respect to our model of privacy: one
for an election between two candidates, one for a discrete version of the facility location
problem, and one for general social choice problems with discrete utilities (via a VCG-
like mechanism). As the number n of players increases, the social welfare achieved by
our mechanisms approaches optimal (as a fraction of n).

To illustrate our ideas, consider an election between two candidates, where each
player has a noticeable preference for one candidate over the other (but this preference
could potentially be outweighed by privacy concerns). To carry out such an election in a
differentially private way, we can use a noisy majority vote. That is, we take a majority
rule after adding random noise of magnitude O(1/ε), where ε is the “differential privacy
parameter” that bounds the influence of each player’s vote on the outcome. Now, as we
reduce ε, we also reduce the privacy costs experienced by each player. However, simply
bounding the overall privacy cost by a function of ε does not suffice to argue truthfulness
of the election mechanism. Indeed, consider a highly skewed election, where two-thirds
of the voters prefer the first candidate. Then the chance that any single player’s vote
affects the outcome is exponentially small in εn, where n is the number of voters. If the
player’s overall privacy cost can be as large as ε, then we would need to set ε very small
(namely, Õ(1/n)) and hence add a very large amount of noise (sacrificing social welfare)
in order to achieve truthfulness. However, we argue that the overall privacy cost of
being truthful in a skewed election should also be exponentially small. Indeed, for
most settings of the random noise, a player cannot affect the outcome by misreporting,
so the privacy cost experienced by the player should be the same regardless of whether

1The mutual information measure is from the original version of Xiao’s paper [Xiao 2011]. Subsequent to
our work, he has revised his model to use a different, prior-free measure of privacy [Xiao 2013].
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the player reported truthfully or not. For the remaining settings of the random noise, in
which the player can affect the outcome, reporting truthfully provides the player with a
noticeable gain in outcome utility, whereas the privacy costs are bounded by a function
of ε and hence can be made arbitrarily small. Put differently, the expected change in
privacy cost experienced by a player that changes his or her report is bounded by ε
times the probability that the outcome changes (which is always at most O(ε), but can be
much smaller, as in the case of a skewed election). This analysis crucially uses the fact
that we adopt a per-outcome model of privacy and can be viewed as a generalization of
the result of Dwork et al. [2010] showing that every ε-differentially private mechanism
actually has expected privacy loss O(ε2).

Our mechanism for discrete facility location is inspired by Xiao’s mechanism [Xiao
2013] (which he shows to be differentially private and truthful if we don’t incorpo-
rate privacy into the utility functions), but with some variation in order to apply an
analysis like the aforementioned. For both the election and facility location mecha-
nisms, an analysis like the one sketched previously establishes universal truthful-
ness—truthfulness for every choice of the mechanism’s random coins. For our VCG-like
mechanism for general social choice problems, we need to work a bit harder to also
ensure that the payments requested do not compromise privacy, and this leads us to
only achieve truthfulness in expectation.

Unlike previous works, we do not treat differential privacy as an end in itself but
rather as a means to incentivize truthfulness from agents that value privacy. Thus,
we do not necessarily need to set the differential privacy parameter ε to be very small
(corresponding to very high privacy, but a larger price in social welfare); we only need to
set it small enough so that the privacy costs are outweighed by the agents’ preferences
for outcomes. Specifically, our analysis shows that as we decrease ε, agents’ ability to
affect the outcome falls, but their expected privacy cost falls even faster. Thus, it is
natural to conclude (as we do) that there is some value of ε (which may be large if the
agents care much more about the outcome than their privacy) at which the privacy
cost is small enough relative to the benefit that agents are willing to report truthfully.
Moreover, by taking agents’ value for privacy into account in the incentives analysis, we
can have greater confidence that the agents will actually report truthfully and achieve
the approximately optimal social welfare our analysis predicts.

The appropriate setting of ε depends on agents’ relative valuation of privacy versus
the outcomes and needs to be determined exogenously to apply our mechanisms. Elic-
iting agents’ values for privacy is an orthogonal problem to the one we consider and is
the subject of a different line of work, starting with Ghosh and Roth [2011] (discussed
more in the next section). Since we use a dominant-strategy solution concept, it is OK
if our assumptions about the privacy valuations and hence our setting of ε are incorrect
for some of the agents; the other agents will still have an incentive to report truthfully.

1.3. Other Related Work

Independently of our work, Nissim, Orlandi, and Smorodinsky [2012a] have consid-
ered a related way of modeling privacy in players’ utilities and constructed truthful
mechanisms under their model. They assume that if all outcomes o have the property
that no player’s report affects the probability of o much (i.e., the mechanism is dif-
ferentially private), then the overall privacy cost of the mechanism is small for every
player. This is weaker than our assumption, which requires an analogous bound on the
privacy cost for each specific outcome o. Indeed, Nissim et al. [2012a] do not consider
a per-outcome model of privacy, and thus do not obtain a reduced privacy cost when
a player has a very low probability of affecting the outcome (e.g., a highly skewed
election). However, they require assumptions that give the mechanism the ability to
reward players for truthfulness (through their concept of “agents’ reactions,” which
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can be restricted by the mechanism). For example, in the case of an election or poll
between two choices (also considered in their paper), they require that a player di-
rectly benefit from reporting their true choice (e.g., in a poll to determine which of two
magazines is more popular, a player will receive a copy of whichever magazine he or
she votes for, providing him or her with positive utility at no privacy cost), whereas
we consider a more standard election where the players only receive utility for their
preferred candidate winning (minus any costs due to privacy). In general, we consider
the standard mechanism design setting where truthfulness is only rewarded through
the public outcome (and possibly payments), and this brings out the main tension dis-
cussed earlier: we can only incentivize truthfulness by giving players an influence on
the outcome, but such an influence also leads to privacy costs, which may incentivize
lying.

Another recent paper that considers a combination of differential privacy and mech-
anism design is that of Ghosh and Roth [2011]. They consider a setting where each
player has some private information and some value for his or her privacy (measured
in a way related to differential privacy). The goal is to design a mechanism for a data
analyst to compute a statistic of the players’ private information as accurately as possi-
ble, by purchasing data from many players and then performing a differentially private
computation. In their model, players may lie about their value for privacy, but they
cannot provide false data to the analyst. So they design mechanisms that get players
to truthfully report their value for privacy. In contrast, we consider settings where
players may lie about their data (their private types), but where they have a direct
interest in the outcome of the mechanism, which we use to outweigh their value for
privacy (so we do not need to explicitly elicit their value for privacy).

Subsequent to our work, Huang and Kannan [2012] examined the properties of the
exponential mechanism [2007], which can be thought of as a noisy version of VCG that
is slightly different from the one we study. They showed that, with appropriate pay-
ments, this mechanism is truthful, individually rational, approximately efficient, and
differentially private, but their model does not incorporate privacy costs into players’
utility functions.

Our model assumes that while the outcome selected by the mechanism can be ob-
served, the actions of the players cannot. Gradwohl [2012] explores implementation
with players with privacy preferences in settings where the actions can be observed
and so techniques based on differential privacy are not a natural fit. Gradwohl and
Smorodinsky [2014] consider a setting where others make inferences about a player
who was preferences over their beliefs, but again these inferences are based on observed
actions rather than outcomes.

For other related and subsequent work, there have been several surveys of mecha-
nism design and differential privacy [Pai and Roth 2013; Dwork and Roth 2014].

We remark that there have also been a number of works that consider secure-
computation-like notions of privacy for mechanism design problems (see Naor et al.
[1999], Dodis et al. [2000], Izmalkov et al. [2005], Parkes et al. [2008], Brandt and
Sandholm [2008], and Feigenbaum et al. [2010] for some examples). In these works,
the goal is to ensure that a distributed implementation of a mechanism does not leak
much more information than a centralized implementation by a trusted third party.
In our setting, we assume we have a trusted third party to implement the mechanism
and are concerned with the information leaked by the outcome itself.

2. BACKGROUND ON MECHANISM DESIGN

In this section, we introduce the standard framework of mechanism design to lay the
ground for modeling privacy in the context of mechanism design in the next section.
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We use a running example of an election between two candidates. A (deterministic)
mechanism is given by the following components:

• A number n of players. These might be the n voters in an election between two
candidates A and B.

• A set � of player types. In the election example, we take � = {A, B}, where θi ∈ �
indicates which of the two candidates is preferred by voter i ∈ [n].

• A set O of outcomes. In the election example, we take O = {A, B}, where the outcome
indicates which of the two candidates wins. (Note that we do not include the tally of
the vote as part of the outcome. This turns out to be significant for privacy.)

• Players’ action spaces Xi for all i ∈ [n]. In general, a player’s action space can be
different from his or her type space. However, in this article, we view the types in �
to be values that we expect players to know and report. Hence, we require Xi = �
for all i ∈ [n] (i.e., we restrict to direct revelation mechanisms, which is without loss
of generality). In the election example, the action of a player is to vote for A or for B.

• An outcome functionM : X1×· · ·×Xn → O that determines an outcome given players’
actions. Since we require Xi = �, the outcome function becomes M : �n → O.
For example, a majority voting mechanism’s function maps votes of players to the
candidate who received a majority of votes.

• Player-specific utility functions Ui : � × O → R for i = 1, . . . , n, giving the utility of
player i as a function of his or her type and the outcome.

To simplify notation, we use a mechanism’s outcome function to represent the mech-
anism. That is, a mechanism is denoted M : �n → O. The goal of mechanism design
is then to design a mechanism M : �n → O that takes players’ (reported) types and
selects an outcome so as to maximize some global objective function (e.g., the sum of the
players’ utilities, known as social welfare) even when players may falsely report their
type in order to increase their personal utility. The possibility of players’ misreporting
is typically handled by designing mechanisms that are incentive compatible; that is, it
is in each player’s interest to report his or her type honestly. A strong formulation of
incentive compatibility is the notion of truthfulness (a.k.a. dominant-strategy incentive
compatibility): for all players i, all types θi ∈ �, all alternative reports θ ′

i ∈ �, and all
profiles θ−i of the other players’ reports,2 we have

Ui(θi,M(θi, θ−i)) ≥ Ui(θi,M(θ ′
i , θ−i)). (1)

If Equation (1) holds for player i (but not necessarily all players), we say that the
mechanism is truthful for player i. Note that we are using θ−i here as both the type
and the report of other players. Since truthfulness must hold for all possible reports of
other players, it is without loss of generality to assume that other players report their
true type. This is in contrast to the notion of a Nash equilibrium, which refers to the
incentives of player i under the assumption that other players are using equilibrium
strategies.

In the election example, it is easy to see that standard majority voting is a truthful
mechanism. Changing one’s vote to a less preferred candidate can never increase one’s
utility (it either does not affect the outcome or does so in a way that results in lower
utility).

In this article, we will allow randomized mechanisms, which we define as M : �n ×
R → O, where R is the probability space from which the mechanism makes its random
choices (e.g., all possible sequences of coin tosses used by the mechanism). We write

2We adopt the standard game-theory convention that θ−i refers to all components of the vector θ except the
one corresponding to player i, and that (θi, θ−i) denotes the vector obtained by putting θi in the ith component
and using θ−i for the rest.
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M(θ ) to denote the random variable obtained by sampling r from R and evaluating
M(θ ; r). This (nonstandard) definition of a randomized mechanism is equivalent to the
standard one (where the mechanism is a function from reported types to a distribution
over outcomes) and makes our analysis clearer.

For randomized mechanisms, one natural generalization of truthfulness is truthful-
ness in expectation: for all players i, all types θi, all utility functions Ui, all reports θ ′

i ,
and all profiles θ−i of the other players’ reports, we have

E[Ui(θi,M(θi, θ−i))] ≥ E[Ui(θi,M(θ ′
i , θ−i))],

where the expectation is taken over the random choices of the mechanism.
A stronger notion is that of universal truthfulness: for all players i, all types θi

and utility functions Ui, all alternative reports θ ′
i , all profiles θ−i of the other players’

reports, and all r ∈ R, we have

Ui(θi,M(θi, θ−i; r)) ≥ Ui(θi,M(θ ′
i , θ−i; r)).

Thus, M being universally truthful is equivalent to saying that for every r ∈ R, M(·; r)
is a deterministic truthful mechanism.

3. MODELING PRIVACY IN MECHANISM DESIGN

The standard framework of mechanism design does not consider a player’s value of
privacy. In this section, we incorporate privacy into mechanism design and adapt the
definitions of truthfulness accordingly. We continue considering the basic mechanism-
design setting from Section 2. However, players now care not only about the outcome
of the mechanism but also about what that outcome reveals about their private types.
Thus, a player’s utility becomes

Ui = U out
i + U priv

i , (2)

where U out
i : � × O → R is player i’s utility for the outcome and U priv

i is player i’s
utility associated with privacy or information leakage. Before discussing the form of
U priv (i.e., what are its inputs), we note that in Equation (2), there is already an implicit
assumption that privacy can be measured in units that can be linearly traded with other
forms of utility. A more general formulation would allow Ui to be an arbitrary monotone
function of U out

i and U priv
i , but we make the standard quasi-linearity assumption for

simplicity.
Now we turn to the functional form of U priv

i . First, we note that U priv
i should not

just be a function of player i’s type and the outcome. What matters is the functional
relationship between player i’s reported type and the outcome. For example, a voting
mechanism that ignores player i’s vote should have zero privacy cost to player i, but one
that uses player i’s vote to entirely determine the outcome may have a large privacy
cost. So we will allow U priv

i to depend on the mechanism itself, as well as the reports
of other players, since these are what determine the functional relationship between
player i’s report and the outcome:

U priv
i : � × O × {M : �n × R → O} × �n−1 → R. (3)

Thus, when the reports of the n players are θ ′ ∈ �n and the outcome is o, the utility
of player i is

Ui(θi, o,M, θ ′
−i) = U out

i (θi, o) + U priv
i (θi, o,M, θ ′

−i).

In particular, Ui has the same inputs as U priv earlier, including M. Unlike standard
mechanism design, we are not given fixed utility functions and then need to design
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a mechanism with respect to those utility functions. Our choice of mechanism affects
the utility functions too! This has implications for the revelation principle, which we
discuss in Section 9.

Note that we do not assume that U priv
i is always negative (in contrast to Xiao [2011]).

In some cases, players may prefer for information about them to be kept secret, and in
other cases, they may prefer for it to be leaked (e.g., in case it is flattering). Thus, U priv

i
may be better thought of as “informational utility” rather than a “privacy cost.”

It is significant that we do not allow the U priv
i to depend on the report or, more gener-

ally, the strategy of player i. This is again in contrast to Xiao’s modeling of privacy [Xiao
2011]. We will discuss the motivation for our choice in Section 8 and also show that
despite this difference, truthfulness with respect to our modeling implies truthfulness
with respect to Xiao’s modeling (Appendix A).

Clearly no mechanism design would be possible if we make no further assumptions
about the U priv

i s and allow them to be arbitrary, unknown functions (as their behavior
could completely cancel the U out

i s). Thus, we will make the natural assumption that
U priv

i is small if player i’s report has little influence on the outcome o. More precisely:

ASSUMPTION 3.1 (PRIVACY-VALUE ASSUMPTION).

∀θ ∈ �n, o ∈ O,M :
∣∣∣U priv

i (θi, o,M, θ−i)
∣∣∣ ≤ Fi

(
max

θ ′
i ,θ

′′
i ∈�

Pr
[
M(θ ′

i , θ−i) = o
]

Pr
[
M(θ ′′

i , θ−i) = o
]
)

,

where Fi : [1,∞) → [0,∞] is a privacy-bound function with the property that Fi(x) → 0
as x → 1, and the probabilities are taken over the random choices of M.

Note that if the mechanism ignores player i’s report, then the right-hand side of
Assumption 3.1 is Fi(1), which naturally corresponds to a privacy cost of 0. Thus, we
are assuming that the privacy costs satisfy a continuity condition as the mechanism’s
dependence on player i’s report decreases. The privacy-bound function Fi could be the
same for all players, but we allow it to depend on the player for generality.

Assumption 3.1 is inspired by the notion of differential privacy, which is due
to Dinur and Nissim [2003], Dwork and Nissim [2004], Blum et al. [2005], and
Dwork et al. [2006]. We restate it in our notation:

Definition 3.2. A mechanism M : �n×R → O is ε-differentially private if and only if

∀θ−i ∈ �n−1, o ∈ O max
θ ′

i ,θ
′′
i ∈�

Pr
[
M(θ ′

i , θ−i) = o
]

Pr
[
M(θ ′′

i , θ−i) = o
] ≤ eε .

By inspection of Assumption (3.1) and the definition of differential privacy, we have
the following result.

PROPOSITION 3.3. If M is ε-differentially private, then for all players i whose
utility functions satisfy Assumption (3.1), all θ−i ∈ �n−1, and o ∈ O, we have
|U priv

i (θi, o,M, θ−i)| ≤ Fi(eε).

In particular, as we take ε → 0, the privacy cost of any given outcome tends to 0.
Like differential privacy, Assumption 3.1 makes sense only for randomized mech-

anisms and only measures the loss in privacy contributed by player i’s report when
fixing the reports of the other players. In some cases, it may be that the other players’
reports already reveal a lot of information about player i. See Section 8 for further dis-
cussion, interpretation, and critiques of our modeling. With this model, the definitions
of truthfulness with privacy are direct analogs of the basic definitions given earlier.
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Definition 3.4 (Truthfulness with Privacy). Consider a mechanism design problem
with n players, type space �, and outcome space O. For a player i with utility function
Ui = U out

i +U priv
i , we say that a randomized mechanism M : �n ×R → O is truthful in

expectation for player i if for all types θi ∈ �i, all alternative reports θ ′
i ∈ � for player

i, and all possible profiles θ−i of the other players’ reports, we have

E[Ui(θi,M(θi, θ−i),M, θ−i)] ≥ E[Ui(θi,M(θ ′
i , θ−i),M, θ−i)].

We say that M is universally truthful for player i if the inequality further holds for all
values of r ∈ R:

Ui(θi,M(θi, θ−i; r),M, θ−i) ≥ Ui(θi,M(θ ′
i , θ−i; r),M, θ−i).

Note that, unlike in standard settings, M being universally truthful does not mean
that the deterministic mechanisms M(·; r) are truthful. Indeed, even when we fix r, the
privacy utility U priv

i (θ, o,M, θ−i) still depends on the original randomized function M,
and the privacy properties of M would be lost if we publicly revealed r. What universal
truthfulness means is that player i would still want to report truthfully even if he or
she knew r but it was kept secret from the rest of the world.

4. PRIVATE TWO-CANDIDATE ELECTIONS

Using Proposition 3.3, we will sometimes be able to obtain truthful mechanisms taking
privacy into account by applying tools from differential privacy to mechanisms that are
already truthful when ignoring privacy. In this section, we give an illustration of this
approach in our example of a two-candidate election.

MECHANISM 4.1. Differentially private election mechanism
Input: profile θ ∈ {A, B}n of votes, privacy parameter ε > 0.

(1) Choose r ∈ Z from a discrete Laplace distribution, namely, Pr[r = k] ∝ exp(−ε|k|).
(2) If #{i : θi = A} − #{i : θi = B} ≥ r, output A. Otherwise, output B.

We show that for sufficiently small ε, this mechanism is truthful for players satisfying
Assumption 3.1:

THEOREM 4.2. Mechanism 4.1 is universally truthful for player i provided that, for
some function Fi:

(1) Player i’s privacy utility U priv
i satisfies Assumption 3.1 with privacy-bound function

Fi, and
(2) U out

i (θi, θi) − U out
i (θi,¬θi) ≥ 2Fi(eε).

Note that Condition 2 holds for sufficiently small ε > 0 (since Fi(x) → 0 as x → 1).
The setting of ε needed to achieve truthfulness depends only on how much the players
value their preferred candidate (measured by the left-hand side of Condition 2) and
how much they value privacy (measured by the right-hand side of Condition 2) and is
independent of the number of players n.

PROOF. Fix the actual type θi ∈ {A, B} of player i, a profile θ−i of reports of the other
players, and a choice r for M’s randomness. The only alternate report for player i we
need to consider is θ ′

i = ¬θi. Let o = M(θi, θ−i; r) and o′ = M(¬θi, θ−i; r). We need to
show that Ui(θi, o,M, θ−i) ≥ Ui(θi, o′,M, θ−i), or equivalently,

U out
i (θi, o) − U out

i (θi, o′) ≥ U priv
i (θi, o′,M, θ−i) − U priv

i (θi, o,M, θ−i). (4)
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We consider two cases:

Case 1: o = o′ In this case, Equation (4) holds because both the left-hand and
right-hand sides are zero.

Case 2: o 
= o′ This implies that o = θi and o′ = ¬θi. (If player i’s report has
any effect on the outcome of the differentially private voting mechanism, then it
must be that the outcome equals player i’s report.) Thus, the left-hand side of
Equation (4) equals U out

i (θi, θi) − U out
i (θi,¬θi). By Proposition 3.3, the right-hand

side of Equation (4) is at most 2F(eε). Thus, Equation (4) holds by hypothesis.

Of course, truthfulness is not the only property of interest. After all, a mechanism
that is simply a constant function is (weakly) truthful. Another property we would like
is economic efficiency. Typically, this is defined as maximizing social welfare, the sum
of players’ utilities. Here we consider the sum of outcome utilities for simplicity. As
is standard, we normalize players’ utilities so that all players are counted equally in
measuring the social welfare. In our voting example, we wish to maximize the number
of voters whose preferred candidates win, which is equivalent to normalizing the left-
hand side of Condition 2 in Theorem 4.2 to 1. Standard, deterministic majority voting
clearly maximizes this measure of social welfare. Our mechanism achieves approximate
efficiency:

PROPOSITION 4.3. For every profile θ ∈ �n of reports, if we select o ← M(θ ) using
Mechanism 4.1, then:

(1) Pr[#{i : θi = o} ≤ maxo′∈{A,B} #{i : θi = o′} − �] < e−ε�.
(2) E [#{i : θi = o}] > maxo′∈{A,B} #{i : θi = o′} − 1/ε.

PROOF. The maximum number of voters will be satisfied by taking the majority
candidate o∗ = Maj(θ ), where we break ties in favor of A. Let �′ = #{i : θi = o∗} − #{i :
θi = ¬o∗}. If o∗ = A, then ¬o∗ = B is selected if and only if the noise r is larger than
�′. If o∗ = B, then ¬o∗ = A is selected if and only if the noise r is smaller than or equal
to −�′. Since r is chosen so that Pr[r = k] ∝ e−ε|k|, the probability of selecting ¬o∗ in
either case is bounded as

Pr[M(θ ) = ¬o∗] ≤
∑

k≥�′ e−εk∑
k∈Z

e−ε|k| = e−ε�′

1 + e−ε
≤ e−ε�′

.

Now the high probability bound follows by considering the case that �′ ≥ � (otherwise,
the event occurs with probability 0). The expectation bound is computed as follows:

E[maxo′∈{A,B} #{i : θi = o′} − #{i : θi = M(θ )}]

= Pr[M(θ ) = ¬o∗] · �′ ≤ �′ · e−ε�′

1 + e−ε
≤ 1

eε
· 1

1 + e−ε
<

1
ε
,

where the second-to-last inequality follows from the fact that xe−εx is minimized at
x = 1/ε.

Thus, the number of voters whose preferred candidate wins is within O(1/ε) of
optimal, in expectation and with high probability. This deviation is independent of n,
the number of players. Thus, if we take ε to be a constant (as suffices for truthfulness)
and let n → ∞, the economic efficiency approaches optimal, when we consider both as
fractions of n. This also holds for vanishing ε = ε(n), provided ε = ω(1/n). Despite the
notation, ε need not be tiny, which allows a tradeoff between efficiency and privacy.

This analysis considers the social welfare as a sum of outcome utilities (again nor-
malizing so that everyone values his or her preferred candidate by one unit of utility
more than the other candidate). We can consider the effect of privacy utilities on the
social welfare too. By Proposition 3.3, the privacy utilities affect the social welfare by at
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most
∑

i Fi(eε), assuming player i satisfies Assumption 3.1 with privacy-bound function
Fi. If all players satisfy Assumption 3.1 with the same privacy-bound function Fi = F,
then the effect on social welfare is at most n · F(eε). By taking ε → 0 (e.g., ε = 1/

√
n),

the privacy utilities contribute a vanishing fraction of n.
Another desirable property is individual rationality: players given the additional

option of not participating should still prefer to participate and report truthfully. This
property follows from the same argument we used to establish universal truthfulness.
By dropping out, the only change in outcome that player i can create is to make his or
her less preferred candidate win. Thus, the same argument as in Theorem 4.2 shows
that player i prefers truthful participation to dropping out.

PROPOSITION 4.4. Under the same assumptions as Theorem 4.2, Mechanism 4.1 is
individually rational for player i.

5. TOOLS FOR PROVING TRUTHFULNESS WITH PRIVACY

The analysis of truthfulness in Theorem 4.2 is quite general. It holds for any differ-
entially private mechanism with the property that if a player can actually change the
outcome of the mechanism by reporting untruthfully, then it will have a noticeable
negative impact on the player’s outcome utility. We abstract this property for use in
analyzing our other mechanisms.

LEMMA 5.1. Consider a mechanism design problem with n players, type space �,
and outcome space O. Let player i have a utility function Ui = U out

i + U priv
i satisfying

Assumption 3.1 with privacy-bound function Fi. Suppose that randomized mechanism
M : �n → O has the following properties:

(1) M is ε-differentially private, and
(2) For all possible types θi , all profiles θ−i of the other players’ reports, all ran-

dom choices r of M, and all alternative reports θ ′
i for player i: if M(θi, θ−i; r) 
=

M(θ ′
i , θ−i; r), then U out(θi,M(θi, θ−i; r)) − U out(θi,M(θ ′

i , θ−i; r)) ≥ 2Fi(eε).

Then M is universally truthful for player i.

Lemma 5.1 implicitly requires that players not be indifferent between outcomes
(unless there is no way for the player to change one outcome to the other). A condition
like this is necessary because otherwise, players may be able to find reports that have
no effect on their outcome utility but improve their privacy utility. However, we show
in Section 7 that in some settings with payments, truthfulness can be achieved even
with indifference between outcomes since payments can break ties.

It is also illustrative and useful to consider what happens when we take the expec-
tation over the mechanism’s coin tosses. We can upper-bound the privacy utility as
follows:

LEMMA 5.2. Consider a mechanism design problem with n players, type space �, and
outcome space O. Let player i have type θi ∈ �i and a utility function Ui = U out

i + U priv
i

satisfying Assumption 3.1. Suppose that randomized mechanism M : �n × R → O is
ε-differentially private. Then for all possible profiles θ−i of the other players’ reports, all
random choices r of M, and all alternative reports θ ′

i for player i, we have∣∣∣E [
U priv

i (θi,M(θi, θ−i),M, θ−i)
] − E

[
U priv

i (θi,M(θ ′
i , θ−i),M, θ−i)

]∣∣∣ ≤ 2Fi(eε) · SD(M(θi, θ−i),M(θ ′
i , θ−i)),

where SD denotes statistical difference.3

3The statistical difference (a.k.a. total variation distance) between two discrete random variables X and Y
taking values in a universe U is defined to be SD(X, Y ) = maxS⊆U | Pr[X ∈ S] − Pr[Y ∈ S]|.
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PROOF. For every two discrete random variables X and Y taking values in a universe
U , and every function f : U → [−1, 1], it holds that | E[ f (X)] − E[ f (Y )]| ≤ 2SD(X, Y ).
(The f that maximizes the left-hand side sets f (x) = 1 when Pr[X = x] > Pr[Y = x]
and sets f (x) = −1 otherwise.) Take U = O, X = M(θi, θ−i), Y = M(θ ′

i , θ−i), and
f (o) = U priv

i (θi, o,M, θ−i)/Fi(eε). By Proposition 3.3, we have f (o) ∈ [−1, 1].

By this lemma, to establish truthfulness in expectation, it suffices to show that
the expected gain in outcome utility from reporting θi instead of θ ′

i grows propor-
tionally with SD(M(θi, θ−i),M(θ ′

i , θ−i)). (Specifically, it should be at least the statisti-
cal difference times 2Fi(eε).) In Lemma 5.1, the gain in outcome utility is related to
the statistical difference by coupling the random variables M(θi, θ−i) and M(θ ′

i , θ−i)
according to the random choices r of M. Indeed, Prr[M(θi, θ−i; r) 
= M(θ ′

i , θ−i; r)] ≥
SD(M(θi, θ−i),M(θ ′

i , θ−i)). Thus, if the outcome-utility gain from truthfulness is larger
than 2Fi(eε) whenever M(θi, θ−i; r) 
= M(θ ′

i , θ−i; r), then we have truthfulness in expec-
tation (indeed, even universal truthfulness).

We note that if M is differentially private, then SD(M(θi, θ−i),M(θ ′
i , θ−i)) ≤ eε − 1 =

O(ε), for small ε. By Lemma 5.2, the expected difference in privacy utility between any
two reports is at most O(Fi(eε) · ε). Thus, ε-differential privacy helps us twice, first in
bounding the pointwise privacy cost (as 2Fi(eε)), and second in bounding the statistical
difference between outcomes. On the other hand, for mechanisms satisfying the condi-
tions of Lemma 5.1, the differential privacy only affects the expected outcome utility by
a factor related to the statistical difference. This is why, by taking ε sufficiently small,
we can ensure that the outcome utility of truthfulness dominates the privacy cost.

Lemma 5.2 is related to, indeed, inspired by, existing lemmas used to analyze the
composition of differentially private mechanisms. These lemmas state that while dif-
ferential privacy guarantees a worst-case bound of ε on the “privacy loss” of all possible
outputs, this actually implies an expected privacy loss of O(ε2). Such bounds correspond
to the special case of Lemma 5.2 when Fi = ln and we replace the statistical difference
with the upper bound eε − 1. These O(ε2) bounds on expected privacy loss were proven
first in the case of specific mechanisms by Dinur and Nissim [2003] and Dwork and
Nissim [2004], and then in the case of arbitrary differentially private mechanisms by
Dwork et al. [2010]. In our case, the O(ε2) bound does not suffice, and we need the
stronger bound expressed in terms of the statistical difference. Consider the differen-
tially private election when the vote is highly skewed (e.g., two-thirds vs. one-third).
Then a player has only an exponentially small probability (over the random choice r of
the mechanism) of affecting the outcome, and so the expected outcome utility for vot-
ing truthfully is exponentially small. On the other hand, by Lemma 5.2, the expected
privacy loss is also exponentially small, so we can still have truthfulness.

6. DISCRETE FACILITY LOCATION

In this section, we apply our framework to discrete facility location. Let � = {�1 <
�2 < · · · < �q} ⊂ [0, 1] be a finite set of types indicating a player’s preferred locations for
a facility on the unit interval and O = [0, 1]. Players prefer to have the facility located
as close to them as possible: U out

i (θi, o) = −|θi −o|. For example, the mechanism may be
selecting a location for a bus stop along a major highway, and the locations �1, . . . , �q
might correspond to cities along the highway where potential bus riders live.

Note that the voting game we previously considered can be represented as the spe-
cial case where � = {0, 1}. This problem has a well-known truthful and economically
efficient mechanism: select the location of the median report. Xiao [2011] gave a private
and truthful mechanism for this problem based on taking the median of a perturbed
histogram. His analysis only proved that the mechanism satisfies “approximate differ-
ential privacy” (often called (ε, δ) differential privacy). To use Proposition 3.3, we need
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the mechanism to satisfy pure ε differential privacy (as in Definition 3.2). Here we do
that for a variant of Xiao’s mechanism.

MECHANISM 6.1. Differentially private discrete facility location mechanism
Input: profile θ ∈ �n of types, privacy parameter ε > 0.

(1) Construct the histogram h = (h1, . . . , hq) of reported type frequencies where hj is the
number of reports θi of type � j and q = |�|.

(2) Choose a random (nonnegative, integer) noise vector r = (r1, . . . , rq) ∈ N
q where

the components rj are chosen independently such that Pr
[
rj = k

]
is proportional to

exp(−εk/2).
(3) Output the type corresponding to median of the perturbed histogram h + r. That is,

we output �Med(h+r), where for z ∈ N
q, we define Med(z) to be the minimum k ∈ [q]

such that
∑k

j=1 zj ≥ ∑q
j=k+1 zj).

Xiao’s mechanism instead chooses the noise components rj according to a truncated
and shifted Laplace distribution. Specifically, Pr[rj = k] is proportional to exp((ε/2) ·
|k − t|) for k = 0, . . . , 2t and Pr[rj = k] = 0 for k > 2t, where t = �(log(1/δ)/ε). This
ensures that the noisy histogram h + r is (ε, qδ) differentially private, and hence the
outcome �Med(h+r) is as well. Our proof directly analyzes the median, without passing
through the histogram. This enables us to achieve pure ε differential privacy and use a
simpler noise distribution. On the other hand, Xiao’s analysis is more general, in that
it applies to any mechanism that computes its result based on a noisy histogram.

LEMMA 6.2. Mechanism 6.1 is ε-differentially private.

PROOF. Differential privacy requires that on any pair of histograms h, h′ reachable
by one player reporting different types, the probability of any particular outcome o = � j
being selected differs by at most an eε multiplicative factor. Since reporting a different
type results in two changes to the histogram (adding to one type and subtracting from
another), we show that on each such change the probability differs by at most an eε/2

factor.
Consider two histograms h and h′ that differ only by an addition or subtraction of 1

to a single entry. Let f j : N
q → N

q map a vector s to the vector (sj +1, s− j) (i.e., identical
except sj has been increased by 1). f j is an injection and has the property that if j is
the median of h + s, then j is also the median of h′ + f j(s). Note that under our noise
distribution, we have Pr[r = s] = eε/2 · Pr[r = f j(s)].

Then, writing M as a function of h rather than θ , we have

Pr[M(h) = � j] =
∑

s s.t. Med(h+s)= j

Pr [r = s]

=
∑

s s.t. Med(h+s)= j

eε/2 · Pr[r = f j(s)]

≤ eε/2 ·
∑

s s.t. Med(h′+ f j (s))= j

Pr[r = f j(s)]

≤ eε/2
∑

s′ s.t. Med(h′+s′)= j

Pr[r = s′]

= eε/2 · Pr[M(h′) = � j].
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A symmetric argument shows this is also true switching h and h′, which completes the
proof.

We note that the only property the proof uses about the noise distribution is that
Pr[r = s] = eε/2 ·Pr[r = f j(s)]. This property does not hold for Xiao’s noise distribution as
described, due to it being truncated above at 2t, but would hold if his noise distribution
was truncated only below.

We next show that this mechanism is truthful and individually rational.

THEOREM 6.3. Mechanism 6.1 is universally truthful and individually rational for
player i provided that, for some function Fi:

(1) Player i’s privacy utility U priv
i satisfies Assumption 3.1 with privacy bound function

Fi, and
(2) For all o, o′ ∈ � such that θi < o < o′ or o′ > o > θi , we have U out

i (θi, o)−U out
i (θi, o′) ≥

2Fi(eε).

In particular, if all players share the standard outcome utility function U out
i (θi, o) =

−|θi − o| and have the same privacy bound function Fi = F, then the mechanism is
universally truthful and individually rational provided that

min
j 
=k

|� j − �k| ≥ 2F(eε).

So, for a fixed set � of player types (preferred locations), we can take ε to be a small
constant and have truthfulness and individual rationality.

PROOF. Fix r ∈ N
q, the randomness used by the mechanism and the reports θ−i of

other players. Following Xiao [2011], we think of r as representing the reports of some
fictional additional players and follow the truthfulness reasoning for the standard,
noiseless median mechanism. Suppose M(θi, θ−i; r) = o and M(θ ′

i , θ−i; r) = o′ 
= o.
If θi < o, then no other report of player i can reduce the median, so we must have
o′ > o. Thus, this change has moved the facility at least one location away from i’s
preferred location. Similarly, if θi > o, we have o′ < o so again the change is away
from i’s preferred location. Therefore, universal truthfulness follows by Lemma 5.1.
For individual rationality, we can model nonparticipation as a report of a type ⊥ that
does not get included in the histogram. Again, any change of the median caused by
reporting ⊥ will move it away from i’s preferred location. Thus, M is individually
rational.

PROPOSITION 6.4. Suppose that every player i has the standard outcome utility function
U out

i (θi, o) = −|θi − o|. Then, for every profile of types θ ∈ �n, if we choose o ← M(θ )
using Mechanism 6.1, we have

(1) Pr
[∑

i U out
i (θi, o) ≤ maxo′

(∑
i U out

i (θi, o′)
) − �

] ≤ q · e−ε�/q.

(2) E
[∑

i U out
i (θi, o)

] ≥ maxo′
(∑

i U out
i (θi, o′)

) − O(q/ε).

Thus, the social welfare is within � = Õ(q)/ε of optimal, both in expectation and with
high probability. As with Proposition 4.3, these bounds are independent of the number
n of participants, so we obtain asymptotically optimal social welfare as n → ∞. Also,
like the discussion after Proposition 4.3, by taking ε = ε(n) to be such that ε = o(1) and
ε = ω(1/n) (e.g., ε = 1/

√
n), the sum of privacy utilities is a vanishing fraction of n (for

participants satisfying Assumption 3.1 with a common privacy bound function F).

PROOF. Note that −∑
i U out

i (θi, o′) = ∑
j hj · |� j − o′|, where h = (h1, . . . , hq) is the

histogram corresponding to θ . This social welfare is minimized by taking o′ = Med(h).
Our mechanism, however, computes the optimal location for the noisy histogram h+ r.
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We can relate the two as follows:

−
∑

i

U out
i (θi, o) =

∑
j

hj · |� j − o|

≤
∑

j

(hj + rj) · |� j − o|

= min
o′

∑
j

(hj + rj) · |� j − o′|

≤ min
o′

∑
j

hj · |� j − o′| +
∑

j

rj

= − max
o′

∑
i

U out
i (θi, o′) +

∑
j

rj .

Thus, for the high probability bound, it suffices to bound the probability that
∑

j rj ≥ �.
This in turn is bounded by q times the probability that any particular rj is at least
�/q, which is at most e−ε�/q. For the expectation bound, we have

E
[ ∑

j

rj

]
=

∑
j

E[rj] = q · 1
1 − e−ε/2 = O

(q
ε

)
.

7. GENERAL SOCIAL CHOICE PROBLEMS WITH PAYMENTS

In the preceding two sections, we considered social choice problems where a group
needs to choose among a (typically small) set of options with mechanisms that do not
use money. In this section, we apply our framework to social choice problems where
payments are possible using an adaptation of the Vickrey-Clarke-Groves (VCG) mech-
anism. (This is the setting for which the Groves mechanism was originally designed,
and unlike in auction settings, the number of outcomes is independent of the num-
ber of players.) In the general case we examine now, we don’t assume any structure
on the utility functions (other than discreteness), and thus need to use payments to
incentivize players to truthfully reveal their preferences.

Specifically, the type θi ∈ � of a player will specify a utility U out(θi, o) ∈ {0, 1, . . . , M}
for each outcome o from a finite set O. This could correspond, for example, to players
having values for outcomes expressible in whole dollars with some upper and lower
bounds. This assumption ensures a finite set of types � and that if a player changes his
or her reported value, it must change by some minimum amount (1 with our particular
assumption). Note that this formulation still allows players to be indifferent among
outcomes. Given our notion of a type, all players share the same outcome utility function
U out

i = U out. In order to reason about individual rationality, we also assume that the
set of types includes a type ⊥ that corresponds to not participating (i.e., U out

i (⊥, o) = 0
for all o and i). For notational convenience, we assume that O = {0, 1, . . . , |O| − 1}.

Our goal is to choose the outcome o∗ that maximizes social welfare (ignoring privacy),
that is, o∗ = argmaxo∈O

∑
i U out(θi, o). A standard way to do so is the Groves mechanism,

a special case of the more general VCG mechanism. Each player reports his or her type
and then the optimal outcome o∗ is chosen based on the reported types. To ensure
truthfulness, each player is charged the externality he or she imposes on others. If
o−i = argmaxo

∑
j 
=i U out(θ j, o) is the outcome that would have been chosen without i’s

input, then player i makes a payment of

Pi =
∑
j 
=i

(U out(θ j, o−i) − U out(θ j, o∗)), (5)

for a combined utility of U out(θi, o∗) − Pi.
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In addition to subtracting payments from player i’s utility as earlier, we also need to
consider the effect of payments on privacy. (The modeling in Section 3 did not consider
payments.) While it may be reasonable to treat the payments players make as secret so
that making the payment does not reveal information to others, the amount a player is
asked to pay reveals information about the reports of other players. Therefore, we will
require that the mechanism release some public payment information π that enables
all players to compute their payments; that is, the payment Pi of player i should be a
function of θi, π , and o∗. For example, π could just be the n-tuple (P1, . . . , Pn), which
corresponds to making all payments public. But in the VCG mechanism, it suffices for
π to include the value Vo = ∑

i U out(θi, o) for all outcomes o ∈ O, since

Pi = (Vo−i − U out(θi, o−i)) − (Vo∗ − U out(θi, o∗)) = max
o

((U out(θi, o∗) − U out(θi, o)) − (Vo∗ − Vo)),

which can be computed using just the Vos, o∗, and θi. Moreover, we actually only need to
release the differences Vo∗ − Vo, and only need to do so for outcomes o such that Vo∗ − Vo ≤ M,
since only such outcomes have a chance of achieving the aforementioned maximum. (Recall
that U out(θi, o) ∈ {0, 1, . . . , M}.) This observation forms the basis of our mechanism, which we
will show to be truthful for players that value privacy (under Assumption 3.1).

Before stating our mechanism, we summarize how we take payments into account
in our modeling. Given reports θ ′ ∈ �n and randomness r, our mechanism M(θ ′; r)
outputs a pair (o∗, π ), where o∗ ∈ O is the selected outcome and π is “payment infor-
mation.” Each player then should send payment Pi = P(θ ′

i , o∗, π ) to the mechanism.
(The payment function P is something we design together with the mechanism M.) If
player i’s true type is θi, then his or her total utility is

Ui(θi, o∗, π,M, θ ′) = U out(θi, o∗) − P(θ ′
i , o∗, π ) + U priv

i (θi, (o∗, π ),M, θ ′
−i).

Note that we measure the privacy of the pair (o∗, π ), since both are released publicly.
To achieve truthfulness for players that value privacy, we will modify the VCG

mechanism described earlier by adding noise to the values Vo. This yields the following
mechanism:

MECHANISM 7.1. Differentially private VCG mechanism
Input: profile θ ∈ �n of types, privacy parameter ε > 0.

(1) Choose λo from a (discrete) Laplace distribution for each outcome o. Specifically, we
set Pr[λo = k] ∝ exp(−(ε · |k|)/(M · |O|)) for every integer k ∈ Z.

(2) Calculate values Vo = ∑
j U out(θ j, o) +λo + o/|O| for each outcome o. (Recall that we

set O = {0, . . . , |O| − 1}. The o/|O| term is introduced in order to break ties.)
(3) Select outcome o∗ = arg maxo Vo.
(4) Set the payment information π = {(o, Vo∗ − Vo) : Vo ≥ Vo∗ − M}.
(5) Output (o∗, π ).

Each player i then sends a payment of

Pi = P(θi, o∗, π ) = max
o

((U out(θi, o∗) − U out(θi, o)) − (Vo∗ − Vo)).

By standard results on differential privacy, the tuple of noisy values {Vo} is ε-
differentially private. Since the output (o∗, π ) is a function of the Vos, the output is
also differentially private:

LEMMA 7.2. Mechanism 7.1 is ε-differentially private.

We now prove that the mechanism is truthful in expectation for players that value
privacy (satisfying Assumption 3.1). To do this, we use Lemma 5.2, which shows that
by taking ε sufficiently small, the expected change in privacy utility from misreporting
θ ′

i instead of θi can be made an arbitrarily small fraction of the statistical difference

ACM Transactions on Economics and Computation, Vol. 4, No. 3, Article 13, Publication date: March 2016.



Truthful Mechanisms for Agents That Value Privacy 13:17

SD(M(θi, θ−i),M(θ ′
i , θ−i)). Thus, to show truthfulness in expectation, it suffices to show

that the statistical difference is at most a constant factor larger than the expected
decrease in utility from misreporting. That is, we want to show the following:

SD(M(θi, θ−i),M(θ ′
i , θ−i))

= O
(
E[U out(θi,M(θi, θ−i)) − P(θi,M(θi, θ−i))] − E[U out(θi,M(θ ′

i , θ−i)) − P(θ ′
i ,M(θ ′

i , θ−i))]
)
.

To bound the statistical difference, we write M(θ ; r) = (M1(θ ; r),M2(θ ; r)), where
M1 gives the outcome o∗ and M2 gives the payment information π . Then we have

SD(M(θi, θ−i),M(θ ′
i , θ−i)) ≤ Pr

r
[M(θi, θ−i ; r) 
= M(θ ′

i , θ−i ; r)] ≤ Pr
r

[M1(θi, θ−i ; r) 
= M1(θ ′
i , θ−i ; r)]

+ Pr
r

[M1(θi, θ−i ; r) = M1(θ ′
i , θ−i ; r) ∧ M2(θi, θ−i ; r) 
= M2(θ ′

i , θ−i ; r)].

The next lemma bounds the statistical difference coming from the outcome:

LEMMA 7.3.

Pr
r

[M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r)] ≤ |O| · (E[U out(θi,M1(θi, θ−i)) − P(θi,M(θi, θ−i))]

− E[U out(θi,M1(θ ′
i , θ−i)) − P(θ ′

i ,M(θi, θ−i))]).

PROOF. It suffices to show that for every value of r, we have

I[M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r)] ≤ |O| · (U out(θi,M1(θi, θ−i; r)) − P(θi,M(θi, θ−i; r)) (6)

− U out(θi,M1(θ ′
i , θ−i; r)) − P(θ ′

i ,M(θi, θ−i; r))),

where I[X] denotes the indicator for the event X. (Then taking expectation over r yields
the desired result.)

If M1(θi, θ−i; r) = M1(θ ′
i , θ−i; r), then both the left-hand and right-hand sides are zero.

(Recall that the payment made by player i on an outcome o depends only on the reports
of the other players and the randomness of the mechanism.)

So consider a value of r such that M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r) (i.e., where the indi-

cator is 1). We can treat the λo + o/|O| term added to each Vo as the report of another
player to the standard VCG mechanism. We know that

U out(θi,M1(θi, θ−i; r))−P(θi,M(θi, θ−i; r))−U out(θi,M(θ ′
i , θ−i; r))−P(θ ′

i ,M(θi, θ−i; r)) ≥ 0

because VCG is incentive compatible for players who don’t have a privacy utility. Since
the mechanism adds an o/|O| term to Vo to avoid ties, the previous inequality is strict.
Moreover, the left-hand side is at least 1/|O|, which establishes Equation (6).

In more detail, let o∗ = M1(θi, θ−i; r) and o′ = M1(θ ′
i , θ−i; r) for some o′ 
= o∗. Write

Wo = ∑
j 
=i U out

j (θ j, o)+λo +o/|O| for each outcome o (Wo is just Vo excluding the report
of player i), and o−i = argmaxo Wo. Since the mechanism chose o∗ on report θi, we must
have

Wo∗ + U out(θi, o∗) ≥ Wo′ + U out(θi, o′).

Since the fractional parts of the two sides are different multiples of 1/|O| (namely,
o∗/|O| ad o′/|O|), we have

Wo∗ + U out(θi, o∗) ≥ Wo′ + U out(θi, o′) + 1/|O|.
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Thus:

U out(θi,M1(θi, θ−i; r)) − P(θi,M(θi, θ−i; r))

= U out(θi, o∗) − (Wo−i − Wo∗ )

≥ U out(θi, o′) − (Wo−i − Wo′ ) + 1/|O|
= U out(θi,M(θ ′

i , θ−i; r)) − P(θ ′
i ,M(θi, θ−i; r)) + 1/|O|,

establishing Equation (6).

Now we need to prove a similar bound for the probability of misreporting only affect-
ing the payment information π . We note that one trivial solution for handling payments
is to only collect payments with a very small probability p but increase the magnitude
of the payments by a factor of 1/p. In order for payments to not contribute more to
the statistical difference than the outcome, we can take p to be the minimum pos-
sible nonzero value of the probability that a misreport can change the outcome (i.e.,
Prr[M1(θi, θ−i; r) 
= M1(θ ′

i , θ−i; r)]). However, this quantity is exponentially small in n.
This would make the magnitude of payments exponentially large, which is undesirable.
(Our assumption that players are risk neutral seems unreasonable in such a setting.)
However, it turns out that we do not actually need to do this; our mechanism already
releases payment information with sufficiently low probability. Indeed, we only release
payment information relating to an outcome o when Vo is within M of Vo∗ , and the prob-
ability that this occurs cannot be much larger than the probability that the outcome is
changed from o∗ to o.

LEMMA 7.4.

Pr
r

[M1(θi, θ−i; r) = M1(θ ′
i , θ−i; r) ∧ M2(θi, θ−i; r) 
= M2(θ ′

i , θ−i; r)]

≤ 2Meε/|O| · Pr
r

[M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r)].

PROOF. First, observe that

Pr
r

[M1(θi, θ−i; r) = M1(θ ′
i , θ−i; r) ∧ M2(θi, θ−i; r) 
= M2(θ ′

i , θ−i; r)]

≤
∑

o1 
=o2

Pr
r

[M1(θi, θ−i; r) = M1(θ ′
i , θ−i; r) = o1 ∧ M2(θi, θ−i; r) 
= M2(θ ′

i , θ−i; r) on o2],

by which we mean that either (o2, Vo1 − Vo2 ) is released in one case but not the other or
it is released in both cases but with different values.

Fix o1 and o2 as earlier. If U out(θi, o1) − U out(θi, o2) = U out(θ ′
i , o1) − U out(θ ′

i , o2),
then Prr[M1(θi, θ−i; r) = M1(θ ′

i , θ−i; r) = o1 ∧ M2(θi, θ−i; r) 
= M2(θ ′
i , θ−i; r) on o2] = 0

because the difference between Vo1 and Vo2 is not changed by the misreporting.
So assume that U out(θi, o1) − U out(θi, o2) 
= U out(θ ′

i , o1) − U out(θ ′
i , o2); these values

must differ by at least 1 due to the discreteness assumption. Fix λo = ko for
o 
= o2. Denote them as a vector λ−o2 = k−o2 . Consider some value ko2 such that
when λo2 = ko2 , we have M1(θi, θ−i; (ko2 , k−o2 )) = M1(θ ′

i , θ−i; (ko2 , k−o2 )) = o1 and
M2(θi, θ−i; (ko2 , k−o2 )) 
= M2(θ ′

i , θ−i; (ko2 , k−o2 )) on o2. (If there is no such ko2 , then the
event has probability 0 for this choice of k−o2 .) Now consider increasing the value
of λo2 . Let k̂o2 be the minimum value such that either M1(θi, θ−i; (k̂o2 , k−o2 )) = o2

or M1(θ ′
i , θ−i; (k̂o2 , k−o2 )) = o2. At the first such value of k̂o2 , only one of these two

events will happen because U out(θi, o1) − U out(θi, o2) and U out(θ ′
i , o1) − U out(θ ′

i , o2) dif-
fer by at least 1. Moreover, we have k̂o2 ≤ ko2 + M because with λo2 = ko2 , we have
Vo1 − Vo2 ≤ M for either report θi or θ ′

i . Since Pr[λo2 = k] ∝ exp(−ε · |k|/(M · |O|)), we
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have Pr[λo2 = ko2 ] ≤ exp(ε/|O|) · Pr[λo2 = k̂o2 ]. Furthermore, there can be at most M
such values of ko2 . Thus,

Pr
r

[λ−o2 = k−o2 ∧ M1(θi, θ−i; r) = M1(θ ′
i , θ−i; r) = o1 ∧ M2(θi, θ−i; r) 
= M2(θ ′

i , θ−i; r) on o2]

≤ Meε/|O| Pr
r

[λ−o2 = k−o2 ∧ M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r) ∧ M1(θi, θ−i; r) ∈ {o1, o2}

∧ M1(θ ′
i , θ−i; r) ∈ {o1, o2}].

Summing over all o1 
= o2 and k−o2 gives us the lemma. The factor 2 in the lemma
statement is due to the fact that∑
o1 
=o2,ko2

Pr
r

[λ−o2 = k−o2 ∧ M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r) ∧ M1(θi, θ−i; r),M1(θ ′

i , θ−i; r) ∈ {o1, o2}]

= 2 Pr
r

[M1(θi, θ−i; r) 
= M1(θ ′
i , θ−i; r)].

Combining Lemmas 7.3 and 7.4, we have

SD(M(θi, θ−i),M(θ ′
i , θ−i)) ≤ |O| · (1 + 2Meε/|O|) · (E[U out(θi,M1(θi, θ−i)) − P(θi,M(θi, θ−i))]

− E[U out(θi,M1(θ ′
i , θ−i)) − P(θ ′

i ,M(θi, θ−i))]).

Applying Lemma 5.2 gives us our theorem.

THEOREM 7.5. Mechanism 7.1 is truthful in expectation and individually rational for
player i provided that, for some function Fi:

(1) Player i’s privacy utility U priv
i satisfies Assumption 3.1 with privacy bound function

Fi, and
(2) 2Fi(eε) · |O| · (1 + 2Meε/|O|) ≤ 1.

In particular, if all players have the same privacy-bound function Fi = F, it suffices
to take ε to be a sufficiently small constant depending only on M and |O| (and not the
number n of players).

Truthfulness in expectation relies on players being risk neutral in terms of their
privacy utility so that it is acceptable that with some low probability, the privacy
costs are larger than their utility from the outcome. An alternative approach that
does not rely on risk neutrality is to switch from the VCG mechanism to the Expected
Externality mechanism. This is a variant on VCG that, rather than charging players
the actual externality they impose as in Equation (5), charges them their expected
externality:

Eθ∼p

⎡
⎣∑

j 
=i

U out(θ j, o−i) − U out(θ j, o∗)

⎤
⎦ , (7)

where p is a prior distribution over �n, o−i is the outcome that maximizes the sum of
outcome utilities of players other than i, and o∗ is the outcome that maximizes the sum
of outcome utilities when i is included. Essentially, i is charged the expected amount he
or she would have had to pay under VCG given the prior over types. Since the amount
players are charged is independent of the actual reports of others, collecting payments
has no privacy implications. (The proof of Lemma 7.3 shows that if we only consider the
privacy cost of the outcome, then we have universal truthfulness.) However, the use of a
prior means that the truthfulness guarantee only holds in a Bayes-Nash equilibrium.
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On the other hand, this mechanism does have other nice properties such as being
adaptable to guarantee budget balance.

Finally, we show that Mechanism 7.1 approximately preserves VCG’s efficiency.

PROPOSITION 7.6. For every profile of types θ ∈ �n, if we choose o ← M(θ ) using
Mechanism 7.1, then we have:

(1) Pr
[∑

i U out
i (θi, o) < maxo′

(∑
i U out

i (θi, o′)
) − �

] ≤ 2|O| · e−ε�/(2M·|O|),
(2) E

[∑
i U out

i (θi, o)
] ≥ maxo′

(∑
i U out

i (θi, o′)
) − O(|O|2 · M/ε).

PROOF. Let o∗∗ = argmaxo U out
j (θ j, o). For the output o∗ of Mechanism 7.1, we have

∑
j

U out
j (θ j, o∗) = Vo∗ − λo∗ − o∗/|O|

≥ Vo∗∗ − λo∗ − o∗/|O|
= (

max
o

U out
j (θ j, o)

) + λo∗∗ + o∗∗/|O| − λo∗ − o∗/|O|(
max

o
U out

j (θ j, o)
) − max

o
(λo − λ∗∗

o ) − 1.

So we are left with bounding maxo(λo − λo∗∗ ) for random variables λo such that Pr[λo =
k] ∝ exp(−ε · |k|/(M · |O|)). For each o,

Pr[λo − λo∗∗ ≥ �] ≤ Pr[λo ≥ �/2] + Pr[λo∗∗ ≤ −�/2] ≤ 2 exp(−ε�/(2M · |O|)).
Taking a union bound over the choices for o completes the high probability bound. For
the expectation, we have

E[max
o

(λo − λo∗∗ )] ≤ E

[∑
o

|λo|
]

= |O| · O (M · |O|/ε) .

Thus, the social welfare is within Õ(|O|2) · M/ε of optimal, both in expectation and
with high probability. As with Proposition 4.3, these bounds are independent of the
number n of participants, so we obtain asymptotically optimal social welfare as n → ∞.
Also, as in the discussion after Proposition 4.3, by taking ε = ε(n) to be such that ε = o(1)
and ε = ω(1/n) (e.g., ε = 1/

√
n), the sum of privacy utilities is also a vanishing fraction of

n (for participants satisfying Assumption 3.1 with a common privacy-bound function F).

8. A BAYESIAN PERSPECTIVE

We now provide a Bayesian interpretation of our privacy model and discuss several of
the model’s limitations.

Our modeling of privacy in Section 3 is motivated in part by viewing privacy as a
concern about others’ beliefs about you. Fix a randomized mechanism M : �n×R → O,
a player i ∈ [n], and a profile θ−i ∈ �n−1 of other players’ reports. Suppose that an
adversary has a prior Ti on the type of player i, as well as a prior Si on the strategy
σ : � → � played by player i. Then, upon seeing an outcome o from the mechanism,
the adversary should replace Ti with a posterior T ′

i computed according to Bayes’ Rule
as follows:

Pr[T ′
i = θi] = Pr[Ti = θi|M(Si(Ti), θ−i) = o]

= Pr[Ti = θi] · Pr[M(Si(Ti), θ−i) = o|Ti = θi]
Pr[M(Si(Ti), θ−i) = o]

.
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Thus, if we set x = maxθ ′,θ ′′∈�(Pr[M(θ ′, θ−i) = o]/ Pr[M(θ ′′, θ−i) = o]) (the argument of
Fi in Assumption 3.1), then we have

x−1 · Pr[Ti = θi] ≤ Pr[T ′
i = θi] ≤ x · Pr[Ti = θi].

So if x is close to 1, then the posterior T ′
i is close to the prior Ti, having the same

probability mass functions within a factor of x, and consequently having statistical
difference at most x − 1. Thus, Assumption 3.1 can be justified by asserting that “if an
adversary’s beliefs about player i do not change much, then it has a minimal impact
on player i’s privacy utility.” One way to think of this is that player i has some smooth
value function of the adversary’s beliefs about him or her, and his or her privacy utility
is the difference of the value function after and before the Bayesian updating. This
reasoning follows the lines of Bayesian interpretations of differential privacy due to
Dwork and McSherry, described in Kasiviswanathan and Smith [2008].

This Bayesian modeling also explains why we do not include the strategy played by
i in the privacy utility function U priv

i . How a Bayesian adversary updates its beliefs
about player i based on the outcome does not depend on the actual strategy played by i,
but rather on the adversary’s beliefs about that strategy, denoted by Si in the previous
discussion. Given that our mechanisms are truthful, it is most natural to consider Si
as the truthful strategy (i.e., the identity function). If the Bayesian adversary values
possessing a correct belief about players, this is analogous to a notion of equilibrium. If
we treat the adversary as another player, then if the players report truthfully and the
adversary assumes the players report truthfully, each is responding optimally to the
other. However, if player i can successfully convince the adversary that he or she will
follow some other strategy Si, then this can be implicitly taken into account in U priv

i .
(But if player i further deviates from Si, this should not be taken into account, since
the adversary’s beliefs will be updated according to Si.)

Our modeling of privacy in terms of others’ beliefs is subject to several (reasonable)
critiques:

• Sometimes a small, continuous change in beliefs can result in discrete choices that
have a large impact in someone’s life. For example, consider a ranking of potential
employees to hire, students to admit, or suitors to marry—a small change in beliefs
about a candidate may cause them to drop one place in a ranking, and thereby not
get hired, admitted, or married. On the other hand, the candidate typically does not
know exactly where such a threshold is and so from his or her perspective, the small
change in beliefs could be viewed as causing a small change in the probability of
rejection.

• As in differential privacy, we only consider an adversary’s beliefs about player i
given the rest of the database. (This is implicit in us considering a fixed θ−i in As-
sumption 3.1.) If an adversary believes that player i’s type is correlated with the
other players (e.g., given by a joint prior T on �n), then conditioning on T−i = θ−i
may already dramatically change the adversary’s beliefs about player i. For example,
if the adversary knew that all n voters in a given precinct prefer the same candidate
(but don’t know which candidate that is), then conditioning on θ−i tells the adver-
sary who player i prefers. We don’t measure the (dis)utility for leaking this kind of
information. Indeed, the differentially private election mechanism of Theorem 4.2
will leak the preferred candidate in this example (with high probability).

• The word “privacy” is used in many other ways. Instead of being concerned about
others’ beliefs, one may be concerned about self-representation (e.g., the effect that
reporting a given type may have on one’s self-image).
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Finally, we remark that for some of the mechanism design settings we consider, pri-
vacy may not be a major concern on its own. For example, in a deterministic majority-
vote election with a large number of voters, each voter’s privacy may intuitively be
protected because the other voters provide sufficient noise to obscure his or her vote.
However, just like in our mechanism, the limited influence that voters have on the
outcome also means that they gain very little in outcome utility from being truthful.
Thus, our model and analysis can be viewed as justifying truthfulness in such real-life
election scenarios. We also note that introducing noise artificially, as in differentially
private mechanisms, has significant advantages over relying on natural noise, par-
ticularly with respect to composition. (For example, if we run an election again, with
a new voter the second time, and the outcome changes, then the new voter’s prefer-
ence has been revealed despite any uncertainty about the other voters’ votes. Adding
independent artificial noise to each vote solves this problem and ensures differential
privacy.)

9. MORE GENERAL PRIVACY MODELS

In this section, we introduce more general models of privacy in mechanism design
and explain analogs of our results for these models. The purpose of introducing these
models is to elucidate assumptions that were implicit in our earlier modeling, explore
the extent to which we can allow players’ privacy losses to depend on their strategies,
and discuss whether the revelation principle holds in our setting.

Here we consider non-direct-revelation mechanisms, where each player chooses an
action from an action space X, and the mechanism is a (possibly randomized) mapping
M : Xn → O from actions to outcomes. Each player i chooses his or her action using a
(possibly randomized) strategy σi : � → X. We let S denote the set of all randomized
strategies that players can use.

In the greatest generality, we could allow player i’s privacy utility U priv
i to depend

on a profile θ of all of the players’ types, the outcome o, the mechanism M, a profile σ
of all of the players’ strategies, and a deviation σ ′

i taken by player i:

U priv
i : �n × O × {M : Xn × R → O} × Sn × S → R. (8)

The most important differences with Equation (3) is that we are allowing the privacy
loss for player i, U priv

i (θ, o,M, σ, σ ′
i ), to depend on full randomized strategies σi of all

n players, whereas in Equation (3), we only allow it to depend on the specific reports
θ ′

i = σi(θi) of players other than player i. (The dependence on the actual types θ =
(θ1, . . . , θn) is not so significant since our dominant-strategy solution concept quantifies
over all player types, and we allow player-specific utility functions U priv

i .) The reason
for keeping both an initial strategy σi for player i and a deviation σ ′

i comes from the
Bayesian perspective of Section 8; a Bayesian adversary might believe that player i is
playing σi when he or she actually deviates and plays σ ′

i .
Since U priv

i has in its arguments enough information to compute the entire output
distribution of the mechanism, that is, M(σ1(θ1), σ2(θ2), . . . , σn(θn)), it also makes sense
to omit the outcome and allow for a direct definition of an “expected” privacy utility
(which could be obtained by taking an expectation over outcomes or allowing for more
general models):

EU priv
i : �n × {M : Xn × R → O} × Sn × S → R. (9)

With these models of privacy utility functions, we obtain the following solution con-
cepts in analogy to Definition 3.4:
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Definition 9.1 (Truthfulness with Privacy, Generalized). Consider a mechanism
design problem with n players, type space �, action space X, and outcome space
O. Let the expected utility function of player i be EU i = EU out

i + EU priv
i , where

EU out
i (θ,M, σ, σ ′

i ) = E[U out
i (θi,M(σ ′

i (θi), σ−i(θ−i)))] and EU priv
i has the syntax of Equa-

tion (9).
A strategy profile σ ∈ Sn is dominant in expectation for player i with type θi if for all

alternative strategies σ ′
i and all type profiles θ−i ∈ �n−1, we have

EU i(θ,M, σ, σi) ≥ EU i(θ,M, σ, σ ′
i ).

Let the per-outcome utility function of player i be Ui = U out
i + U priv

i , where U priv
i is

as in Equation (8). We say that a strategy profile σ ∈ Sn is universally dominant for
player i with type θi if for all alternative strategies σ ′

i , all type profiles θ−i ∈ �n−1, and
all values of r ∈ R, we have

E[Ui(θ,M(σi(θi), σ−i(θ−i); r),M, σ, σi)] ≥ E[Ui(θ,M(σ ′
i (θi), σ−i(θ−i); r),M, σ, σ ′

i )],

where the expectations are taken over the randomized strategies in σ and σ ′
i .

We say that M is truthful in expectation (universally truthful, respectively) for player
i if X = � and the identity profile is a dominant in expectation (universally dominant,
respectively) strategy for player i.

With these definitions, we have the following generalization of Assumption 3.1:

ASSUMPTION 9.2 (GENERALIZED PRIVACY-VALUE ASSUMPTION).

∀θ ∈ �n, o ∈ O,M, σ ∈ Sn, σ ′
i ∈ S :

∣∣U priv
i (θ, o,M, σ, σ ′

i )
∣∣ ≤ Fi

(
max

σ ′′
i ,σ ′′′

i ∈X

Pr
[
M(σ ′′

i (θi), σ−i(θ−i)) = o
]

Pr
[
M(σ ′′′

i (θi), σ−i(θ−i)) = o
]
)

,

where Fi : [1,∞) → [0,∞] is a privacy-bound function with the property that Fi(x) → 0
as x → 1, and the probabilities are taken over the randomness of both M and the
strategies σ ′′

i , σ ′′′
i , σ−i .

To make use of it, we will again use differential privacy, which we restate using this
section’s more general notation.

Definition 9.3. A mechanism M : Xn×R → O is ε-differentially private if and only if

∀x−i ∈ Xn, o ∈ O, max
x′

i ,x
′′
i ∈S

Pr
[
M(x′

i, x−i) = o
]

Pr
[
M(x′′

i , x−i) = o
] ≤ eε .

By inspection of Assumption (9.2) and the definition of differential privacy, we have
the following result.

PROPOSITION 9.4. If M is ε-differentially private, then for all players i whose util-
ity functions satisfy Assumption 3.1, all θ ∈ �n, o ∈ O, σ ∈ Sn, σ ′

i ∈ S we have
|U priv

i (θ, o,M, σ, σ ′
i )| ≤ Fi(eε).

Under this assumption and the further requirement that a player’s privacy utility
does not depend on the strategy σ ′

i that he or she actually follows, we obtain the follow-
ing generalized analysis of the differentially private two-candidate voting mechanism
(Theorem 4.2):

THEOREM 9.5. Mechanism 4.1 is universally truthful for player i provided that, for
some function Fi:
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(1) Player i’s privacy utility U priv
i satisfies Assumption 9.2 with privacy bound function

Fi,
(2) Player i’s privacy utility U priv

i does not depend on the strategy σ ′
i followed by player

i, and
(3) U out

i (θi, θi) − U out
i (θi,¬θi) ≥ 2Fi(eε).

A justification for the assumption that U priv
i does not directly depend on the strategy

σ ′
i is that σ ′

i is not visible to an external observer (such as a privacy adversary) except
through its effect on the outcome o.

PROOF. Fix the actual type θi ∈ {A, B} of player i, a type profile θ−i and strategy profile
σ−i of the other players, and a choice r for M’s randomness. The truthful strategy
is σ (θ ) = θ , and an alternate strategy for player i is now σ ′

i , which consists of two
probability distributions on {A, B} (one for each type).

We need to show that

E[Ui(θ,M(θi, θ−i; r),M, σ, σi)] ≥ E[Ui(θ,M(σ ′
i (θi), θ−i; r),M, σ, σ ′

i )],

where the expectations are taken over the (potentially) randomized strategy σ ′
i .

Equivalently:

E[U out
i (θi,M(θi, θ−i; r)) + U priv

i (θ,M(θi, θ−i; r),M, σ )] (10)

≥ E[U out
i (θi,M(σ ′

i (θi), θ−i; r)) + U priv
i (θ,M(σ ′

i (θi), θ−i; r),M, σ )],

where again the expectations are taken over the randomized strategy σ ′
i and we have

omitted the final argument of U priv
i (set to σi and σ ′

i , respectively) because by assump-
tion it is irrelevant. Since σ ′

i (θi) is simply a distribution over pure strategies θ ′
i , by

averaging, it suffices to show that for every θ ′
i , we have

U out
i (θi,M(θi, θ−i; r)) + U priv

i (θ,M(θi, θ−i; r),M, σ ) (11)

≥ U out
i (θi,M(θ ′

i , θ−i; r)) + U priv
i (θ,M(θ ′

i , θ−i; r),M, σ ),

From this point, the proof exactly follows that of Theorem 4.2. Specifically, setting
o = M(θi, θ−i; r) and o′ = M(θ ′

i , θ−i; r) and rearranging terms, we need to show

U out
i (θi, o) − U out

i (θi, o′) ≥ U priv
i (θ, o′,M, σ ) − U priv

i (θ, o,M, σ ). (12)

We consider two cases:

Case 1: o = o′ In this case, Equation (12) holds because both the left-hand and
right-hand sides are zero.

Case 2: o 
= o′ This implies that o = θi and o′ = ¬θi. (If player i’s report has any
effect on the outcome of the differentially private voting mechanism, then it must
be that the outcome equals player i’s report.) Thus, the left-hand side of Equa-
tion (12) equals U out

i (θi, θi) − U out
i (θi,¬θi). By Proposition 9.4, the right-hand side

of Equation (12) is at most 2F(eε). Thus, Equation (12) holds by hypothesis.

When using expected utility, we can allow a player’s privacy utility to depend on his
or her strategy, but the effect of changing a strategy should be bounded by the change
it causes in the output distribution of the mechanism. That is:

ASSUMPTION 9.6 (INFLUENCE-BOUNDED PRIVACY).

∀θ ∈ �n, σ ∈ Sn, σ ′
i ∈ S :∣∣EU priv

i (θ,M, σ, σi) − EU priv
i (θ,M, σ, σ ′

i )
∣∣ ≤ εi · SD(M(σ (θ )),M(σ ′

i (θi), σ−i(θ−i))).

If this condition holds, we say that M provides influence-bounded privacy εi to player i.
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If a player’s privacy utility does not depend on his or her strategy, then influence-
bounded privacy follows from Assumption 9.2 and the mechanism M being differ-
entially private (but influence-bounded privacy is more general, in that it allows a
dependence on a player’s strategy):

LEMMA 9.7. Consider a mechanism design problem with n players, type space �,
action space X, and outcome space O. Let player i have type θi ∈ �i and a utility
function Ui = U out

i + U priv
i with the syntax of Equation (8). Define EU priv

i (θ,M, σ, σ ′
i ) =

E[U priv
i (θ,M(σ ′

i (θi), σ−i(θ−i)),M, σ, σ ′
i )]. Suppose:

(1) Randomized mechanism M : �n × R → O is ε-differentially private,
(2) U priv

i satisfies Assumption 9.2 with privacy bound Fi, and
(3) U priv

i does not depend on the strategy σ ′
i of player i.

Then, M provides 2Fi(eε) influence-bounded privacy to player i.

The proof of this lemma is essentially identical to that of Lemma 5.2.

PROOF. For every two discrete random variables X and Y taking values in a uni-
verse U , and every function f : U → [−1, 1], it holds that | E[ f (X)] − E[ f (Y )]| ≤
2SD(X, Y ). Take U = O, X = M(σi(θi), σ−i(θ−i)), Y = M(σ ′

i (θi), σi(θ−i)), and f (o) =
U priv

i (θ, o,M, σ )/Fi(eε). (Again, we omit the last argument of U priv
i because by assump-

tion it is irrelevant.) By Proposition 9.4, we have f (o) ∈ [−1, 1].

Now we can generalize the analysis of the voting mechanism to obtain truthfulness
in expectation even when privacy utilities depend on players’ strategies, provided that
they are influence bounded according to Assumption 9.6.

THEOREM 9.8. Mechanism 4.1 is truthful in expectation for player i assuming that it
provides influence-bounded privacy at most U out

i (θi, θi) − U out
i (θi,¬θi) to player i.

PROOF. We need to show that

EU i(θ,M, σ, σi) ≥ EU i(θ,M, σ, σ ′
i ),

or equivalently,

E[U out
i (θi,M(σi(θi), σ−i(θ−i)))] − E[U out

i (θi,M(σ ′
i (θi), σ−i(θ−i)))] (13)

≥ EU priv
i (θ,M, σ, σi) − EU priv

i (θ,M, σ, σ ′
i )].

By assumption, the right-hand side of Equation (13) is at most (U out
i (θi, θi) −

U out
i (θi,¬θi)) · SD(M(σ (θ )),M(σ ′

i (θi), σ−i(θ−i))), which by definition is exactly the value
of the left-hand side.

The Revelation Principle. We now have a definitional framework that allows us
to discuss the extent to which the revelation principle applies in our setting. Recall
that the revelation principle says that if we have a non-direct-revelation mechanism
M with a dominant-strategy equilibrium profile σ , then we can simulate it by a direct
revelation mechanismM, whereM(θ ) = M(σ (θ )). That is, the new mechanismM takes
the (reported) types of the players, evaluates their strategies σ for them, and then runs
the original mechanism. Previous papers (particularly Ghosh and Roth [2011]) have
argued that the revelation principle should not hold in contexts where agents value
privacy, because it requires revealing more information. However, we (and previous
papers such as Ghosh and Roth [2011]) are working in a model where the mechanism
is trusted and the only privacy concerns being modeled are with respect to an external
adversary that views the outcome (which is the same under M as under M). In such a
case, a revelation principle intuitively should hold.
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However, it is subtle to formalize this intuition, since the modeling of agents that
value privacy requires that the privacy utility functions depend on the mechanism M
itself. If we change the mechanism to M = M ◦σ , the utility functions can change dra-
matically, and we can no longer relate strategic considerations in the two mechanisms.
Thus, we need to impose more structure on the way in which the utilities depend on M
(and σ ). Taking the Bayesian perspective of Section 8, it is natural to require that the
privacy utility for player i when deviating from equilibrium σ by σ ′

i depends only on
the functions M ◦ σ and M ◦ (σ ′

i , σ−i), along with the type profile θ and the outcome
o. The function M ◦ σ reflects the mapping from types to outcome that a Bayesian
adversary expects the players to play, and the function M ◦ (σ ′

i , σ−i) is the mapping
induced by player i’s deviation. Implicit in this modeling is the view that an adver-
sary is not colluding with any of the other players, and in particular cannot see their
randomization or report. Under this modeling, the revelation principle does hold:

THEOREM 9.9 (REVELATION PRINCIPLE WITH PRIVACY). Consider a mechanism design
problem with n players, type space �, action space X, and outcome space O. Let the
expected utility function of player i be EU i = EU out

i +EU priv
i , where EU out

i (θ,M, σ, σ ′
i ) =

E[U out
i (θi,M(σ ′

i (θi), σ−i(θ−i)))] and EU priv
i has the syntax of Equation (9) and satisfies

EU priv
i (θ,M, σ, σ ′

i ) = EV priv
i (θ,M ◦ σ,M ◦ (σ ′

i , σ−i)) for some function EV priv
i .

Then, if σi is dominant in expectation for player i in mechanism M, it follows that the
direct revelation mechanism M = M◦σ is truthful in expectation for player i. Moreover,
for every type profile θ , the players’ utilities and the joint distribution on outcomes are
the same under M with the truthful strategy profile σ as they are under M with σ .

PROOF. We begin with the second claim. Let σ be the truthful strategy profile for M.
Given a mechanism M and strategy profile σ , for all θ , the distribution over outcomes
is the law of M(σ (θ )) = M◦σ (θ ) = M(σ (θ )). Thus, they have the same distribution over
outcomes. Similarly, the distribution over outcome utilities is the law of U out

i (θi, M(σ (θ )))
in each case and so the joint distribution over outcomes and outcome utility is the same
for each mechanism. This implies that EU out

i (θ,M, σ , σ i) = EU out
i (θ,M, σ, σi). We also

have

EU priv
i (θ,M, σ , σ i) = EV priv

i (θ,M ◦ σ ,M ◦ (σ i, σ−i))

= EV priv
i (θ,M ◦ σ,M ◦ (σi, σ−i))

= EU priv
i (θ,M, σ, σi).

Thus, the utilities are the same under M with σ as under M with σ .
Now we prove the first claim, about truthfulness in expectation. Given an arbitrary

strategy σ ′
i : � → �(�), we need to show that

EU i(θ,M, σ , σ i) ≥ EU i(θ,M, σ , σ ′
i).

Let σ ′
i (θ ) = σi(σ ′

i(θ )). Then M(σ ′
i(θ ), σ−i(θ−i)) = M(σ ′

i (θ ), σ−i(θ−i)). Thus, by the claim
regarding utilities proven earlier and the fact that M is dominant in expectation, we
have

EU i(θ,M, σ , σ i) = EU i(θ,M, σ, σi)
≥ EU i(θ,M, σ, σ ′

i )

= E[U out
i (θi,M(σ ′

i (θi), σ−i(θ−i)))] + EV priv
i (θ,M ◦ σ,M ◦ (σ ′

i , σ−i))
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= E[U out
i (θi,M(σ ′

i(θi), σ−i(θ−i)))] + EV priv
i (θ,M ◦ σ ,M ◦ (σ ′

i, σ−i))

= EU out
i (θ,M, σ , σ ′

i) + EU priv
i (θ,M, σ , σ ′

i)

= EU i(θ,M, σ , σ ′
i).

We note that the conditions on EU priv
i in Theorem 9.9 hold in particular under the

Bayesian adversary model of Section 8 (which is consistent with, and indeed motivated
by, the model used in the main results of the article). That is, suppose a player’s privacy
utility is the function of a Bayesian adversary’s posterior belief T ′

i of its type. Fixing
the adversary’s joint prior T on all the players’ types, given an outcome o, the posterior
T ′

i is computed as

Pr[T ′
i = θ ′

i ] = Pr[Ti = θ ′
i |M(σ (T )) = o].

(In Section 8, we took the other players’ types as fixed at θ−i in order to apply differential
privacy, but the revelation principle holds with an arbitrary joint prior.) Thus, the per-
outcome privacy utility U priv

i depends on o, and M ◦ σ (but not any other property of
M or σ ). Now, when player i deviates to strategy σ ′

i , the expected privacy utility EU priv
i

is obtained by taking the expectation of U priv
i over o ← M(σ ′

i (θi), σ−i(θ−i)). Thus, player
i’s expected privacy utility EU priv

i is a function of only θ , M ◦ σ , and M ◦ (σ ′
i , σ−i), as

needed for the revelation principle.
Another example of privacy utility functions that meet the conditions of The-

orem 9.9 is a mutual information measure used by Xiao [2011]: EU priv
i =

I(Ti;M(σ ′
i (Ti), σ−i(T−i))), where again T = (Ti, T−i) is a joint prior on the types of

all players. (Xiao’s notion of privacy is discussed more in Appendix A.)
An alternative justification for the restriction to direct-revelation mechanisms in

our article is that the properties we require are preserved under passing from M to
M = M◦σ . Intuitively, all we use is that players have a limited influence on the output
distribution (in order to bound their privacy utility functions), and their influence only
decreases as we move from M to M. In particular, if M is ε-differentially private, then
so is M. Moreover, for every outcome o and θ ∈ �n, we have

max
θ ′

i ,θ
′′
i ∈S

Pr
[
M(θ ′

i , θ−i) = o
]

Pr
[
M(θ ′′

i ), θ−i) = o
] ≤ max

σ ′′
i ,σ ′′′

i ∈S
Pr

[
M(σ ′′

i (θi), σ−i(θ−i)) = o
]

Pr
[
M(σ ′′′

i (θi), σ−i(θ−i)) = o
] .

Thus, if we take Assumptions 3.1 and 9.2, we obtain a stronger upper bound on the
privacy utility functions for M than for M, and hence a truthfulness analysis that only
uses such an upper bound will work as well for M as for M.

APPENDIX

A. COMPARISON TO XIAO’S PRIVACY MEASURE4

Xiao [2011] measures privacy cost as being proportional to the mutual information be-
tween a player’s type and the outcome of the mechanism, where the mutual information
between two jointly distributed random variables X and Y is defined to be

I(X; Y ) = H(X) + H(Y ) − H(X, Y ) = E
(x,y)∼(X,Y )

[
log

Pr[(X, Y ) = (x, y)]
Pr[X = x] · Pr[Y = y]

]
,

4Subsequent to our work, Xiao has revised his model to use a different, prior-free measure of privacy. This
appendix provides a comparison to his original formulation.
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where H(Z) = Ez∼Z[log(1/ Pr[Z = z])] is Shannon entropy. In order for the mutual in-
formation to make sense, Xiao assumes a prior Ti on a player’s type and the privacy cost
also depends on the strategy σ ′

i : � → � played by player i. Accordingly, his measure of
outcome utility also takes an expectation over the same prior Ti. As mentioned earlier,
Xiao’s modeling is not a special case of our main definitions, because his modeling of
privacy depends on the actual strategy σi followed by player i. Nevertheless, we can fit
it into the more general framework of Section 9. Specifically, he takes the following:

Definition A.1. Let � be a type space, O an outcome space, and M : �n × R → O a
randomized direct-revelation mechanism. For a prior Ti on player i’s type and νi ≥ 0 a
measure of player i’s value for privacy, Xiao’s privacy utility function is

EU i(θ,M, σ, σ ′
i ) = −νi · I(Ti;M(σ ′

i (Ti), σ−i(θ−i))).

M is Xiao truthful for player i if it is truthful in expectation for player i in the sense of
Definition 9.1.

While mutual information is a natural first choice for measuring privacy, it has
several disadvantages compared to our modeling:

—It treats all bits of information the same, whereas clearly one may have different
concerns for different aspects of one’s private type. For example, one may be a lot
more sensitive about the high-order bits of one’s salary than the low-order bits.

—It forces us to consider a prior on a player’s type and take expected utility over
that prior. Contrast this with the Bayesian interpretation of our privacy modeling
described in Section 8. There the prior Ti is only an adversary’s beliefs about player
i’s type, which may be completely incorrect. Player i’s utility is computed with respect
to his or her fixed, actual type θi.

Nevertheless, we can show that truthfulness with respect to our definitions implies
truthfulness with respect to his:

THEOREM A.2. If M is truthful in expectation for player i with respect to the privacy
utility function

U priv
i (θi, o,M, θ−i) = −νi · log

Pr[M(θi, θ−i) = o]
Pr[M(Ti, θ−i) = o]

,

then M is Xiao truthful for player i with prior Ti.

We note that the privacy utility function in Theorem A.2 satisfies Assumption 3.1
with Fi(x) = νi · log(x), and hence all of our truthful mechanisms are also Xiao truthful.

PROOF. First note that, by Bayes’ Rule,

U priv
i (θi, o,M, θ−i) = −νi · log

Pr[M(Ti, θ−i) = o|Ti = θi]
Pr[M(Ti, θ−i) = o]

= −νi · log
Pr[(Ti,M(Ti, θ−i)) = (θi, o)]

Pr[Ti = θi] · Pr[M(Ti, θ−i) = o]
. (14)

Thus,

−νi · I(Ti;M(Ti, θ−i)) = E
[
U priv

i (Ti,M(Ti, θ−i),M, θ−i)
]
. (15)

To relate the mutual information under strategy σ ′
i to U priv

i , we use the notion of KL
divergence between two random variables X and Y , which is defined as

KL(X||Y ) = E
x∼X

[
log

Pr[X = x]
Pr[Y = y]

]
.
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We will use the fact that for a random variable W jointly distributed with X and Y , we
have KL(W, X||W, Y ) ≥ KL(X||Y ). (This follows from the Log-Sum Inequality [Cover
and Thomas 1991].) Taking W = Ti, X = M(σ ′

i (Ti), θ−i), and Y = M(Ti, θ−i), we have

I(Ti;M(σ ′
i (Ti), θ−i))

≥ I(Ti;M(σ ′
i (Ti), θ−i)) − KL(Ti,M(σ ′

i (Ti))||Ti,M(Ti)) + KL(M(σ ′
i (Ti))||M(Ti))

= E
(θi ,o)∼(Ti ,M(σ ′

i (Ti ),θ−i ))

[
log

Pr[(Ti,M(Ti, θ−i)) = (θi, o)]
Pr[Ti = θi] · Pr[M(Ti, θ−i) = o]

]
.

Combining this with Equation (14), we have

−νi · I(Ti;M(σ ′
i (Ti), θ−i)) ≤ E

[
U priv

i (Ti, o,M(σ ′
i (Ti), θ−i)

]
. (16)

By truthfulness in expectation with respect to U priv
i , we have

E[U out(Ti,M(Ti, θ−i))] + E
[
U priv

i (Ti,M(Ti, θ−i),M, θ−i)
]

(17)

≥ E[U out(Ti,M(σ ′
i (Ti), θ−i))] + E

[
U priv

i (Ti, o,M(σ ′
i (Ti), θ−i, θ−i)

]
.

Combining Equations (15), (16), and (17) completes the proof.
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